Adaptive Reduced Order Models for Chaotic Multi-Scale Problems

Cheng Huang and Ryan Camacho University of Kansas

Karthik Duraisamy University of Michigan

AF/COE Workshop Thursday, August 31 Dayton, OH

ROM with linear subspace can *accurately* <u>reproduce</u> but cannot *accurately* <u>predict</u> chaotic multi-scale problems

Time = 0.2551 *Arnold-Medabalimi et al., International Journal of Spray and Combustion Dynamics, 2022

What is enough training data to predict QoI accurately?

FOM (3D Rocket Combustion)

T, K 0 160 320 480 640 800

4

2000Hz @

10%

POD Energy Decay vs Training Data Amount

Slow decays of Kolmogorov N-width with linear subspace approximation

• Significant number of basis modes required to recover accurate representations of the target physics

Non-convergence of low-rank approx. versus training data amount

• Predictions of *unseen* physics requires significant amount of training data

a priori Analysis based on Projected FOM ($q_{ref} + VV^T q_{FOM}$) - challenging to use *linear static* basis for chaotic transport-dominated problems

Approaches to break the Kolmogorov barrier and enable predictive ROM

- Local subspace
 - Amsallem et al. (2012 & 2015), Geelen and Willcox (2022), ...
- Nonlinear manifold
 - Lee and Carlberg (2019), Kim and Choi (2021), Barnett and Farhat (2022), Geelen and Willcox (2022), ...
- Adaptive MOR
 - Peherstorfer (2015, 2020 & 2022), Ramezanian et al. (2021), Zucatti and Zahr (2023), …

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
- Test Case II: 2D Single-injector Rocket Combustor
- Test Case III: 2D Premixed RDE
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Projection-based ROM with Adaptive Basis and Sampling

Define fully discrete FOM equation residual, **r**, *with* full states **q**_p approximated using basis changing with time (**V**ⁿ)

$$\frac{\mathrm{d}\mathbf{q}(\mathbf{q}_{p})}{\mathrm{d}t} = \mathbf{f}(\mathbf{q}_{p}) \rightarrow \mathbf{r}(\tilde{\mathbf{q}}_{p}^{n}) \triangleq \frac{\mathbf{q}(\tilde{\mathbf{q}}_{p}^{n}) - \mathbf{q}(\tilde{\mathbf{q}}_{p}^{n-1})}{\Delta t} - \mathbf{f}(\tilde{\mathbf{q}}_{p}^{n}) \text{ where } \tilde{\mathbf{q}}_{p}^{n} \triangleq \mathbf{q}_{p,ref} + \mathbf{V}^{n}\mathbf{q}_{r}^{n}$$

• Approximate **r** using hyper-reduction *with* sampling points changing with time (S_n)

$$\overline{\mathbf{r}}\left(\widetilde{\mathbf{q}}_{p}^{n}\right) \triangleq \mathbf{U}\left(\mathbf{S}_{n}^{T}\mathbf{U}\right)^{+}\mathbf{S}_{n}^{T}\mathbf{r}\left(\widetilde{\mathbf{q}}_{p}^{n}\right) \text{ with } \mathbf{U}=\mathbf{V}^{n}$$

• Minimize the hyper-reduced residual, $\overline{\mathbf{r}}$

$$\left\{\mathbf{q}_{r}^{n}, \mathbf{V}^{n}, \mathbf{S}_{n}^{n}\right\} = \arg\min_{\mathbf{q}_{r}^{n}, \mathbf{V}^{n}, \mathbf{S}_{n}^{n}} \left\|\mathbf{V}^{n}\left(\mathbf{S}_{n}^{T}\mathbf{V}^{n}\right)^{+} \mathbf{S}_{n}^{T}\mathbf{r}\left(\mathbf{q}_{p, ref} + \mathbf{V}^{n}\mathbf{q}_{r}^{n}\right)\right\|_{2}^{2}$$
**intractable

We seek to solve three sequential minimization problem instead

$$\left\{ \mathbf{q}_{r}^{n}, \mathbf{V}^{n}, \mathbf{S}_{n} \right\} = \underset{\mathbf{q}_{r}^{n}, \mathbf{V}^{n}, \mathbf{S}_{n}}{\operatorname{arg\,min}} \left\| \mathbf{V}^{n} \left(\mathbf{S}_{n}^{T} \mathbf{V}^{n} \right)^{+} \mathbf{S}_{n}^{T} \mathbf{r} \left(\mathbf{q}_{p, ref} + \mathbf{V}^{n} \mathbf{q}_{r}^{n} \right) \right\|_{2}^{2}$$

$$\mathbf{V}^{n} = \arg \min_{\mathbf{q}_{r}^{n}} \left\| \mathbf{V}^{n-1} \left(\mathbf{S}_{n-1}^{T} \mathbf{V}^{n-1} \right)^{+} \mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{q}_{p, ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n} \right) \right\|_{2}^{2}$$

$$\mathbf{V}^{n} = \arg \min_{\mathbf{V}^{n}} \left\| \mathbf{V}^{n} \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{F}_{n} \right] - \frac{\mathbf{F}_{n}}{\mathbf{F}_{n}} \right]^{2}$$

$$*^{*} \text{full-model state is estimated and collected during online ROM stage}$$

10

Estimate full-model state from FOM equation residual

$$\mathbf{F}_{n} = \begin{bmatrix} \overline{\mathbf{q}}_{p}^{n} & \cdots & \overline{\mathbf{q}}_{p}^{n+w} \end{bmatrix}$$

$$\mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) = \frac{\mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) - \mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n-1} \right)}{\Delta t} - \mathbf{S}_{n-1}^{T} \mathbf{f} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \widetilde{\mathbf{q}}_{p}^{n} \right) = 0$$

$$** \text{full-state info at sampled points}$$

$$and$$

$$** \text{full-state info at unsampled points}$$

$$\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} = \widetilde{\mathbf{q}}_{p}^{n} \text{ where } \widetilde{\mathbf{q}}_{p}^{n} = \mathbf{q}_{p, ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n} \text{ and } \mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \bigcup \mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} = \mathbf{I}$$

Basis Adaptation (multi-step)

* Peherstorfer, SIAM J. Sci. Comput. 2020

$$\mathbf{V}^{n} = \arg\min_{\mathbf{V}^{n}} \left\| \mathbf{V}^{n} \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{F}_{n} \right] - \mathbf{F}_{n} \right\|_{2}^{2}$$

$$\left\{ \boldsymbol{\alpha}_{n}, \boldsymbol{\beta}_{n} \right\} = \arg\min_{\boldsymbol{\alpha}_{n}, \boldsymbol{\beta}_{n}} \left\| \left(\mathbf{V}^{n-1} + \boldsymbol{\alpha}_{n} \boldsymbol{\beta}_{n}^{T} \right) \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{F}_{n} \right] - \mathbf{F}_{n} \right\|_{2}^{2}$$

$$\downarrow$$

$$\boldsymbol{\alpha}_{n} \text{ and } \boldsymbol{\beta}_{n} \text{ solved from svd of } \mathbf{R} = \mathbf{V}^{n-1} \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{F}_{n} \right] - \mathbf{F}_{n}$$

Basis Adaptation (one-step)

* Huang and Duraisamy, JCP 2023

$$\mathbf{V}^{n} = \arg\min_{\mathbf{V}^{n}} \left\| \mathbf{V}^{n} \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{\bar{q}}_{p}^{n} \right] - \mathbf{\bar{q}}_{p}^{n} \right\|_{2}^{2}$$

$$\mathbf{V}^{n-1} = \arg\min_{\delta \mathbf{V}^{n-1}} \left\| \left(\mathbf{V}^{n-1} + \delta \mathbf{V}^{n-1} \right) \left[\left(\mathbf{V}^{n-1} \right)^{+} \mathbf{\bar{q}}_{p}^{n} \right] - \mathbf{\bar{q}}_{p}^{n} \right\|_{2}^{2}$$

$$\downarrow$$

$$\delta \mathbf{V}^{n-1} = \frac{\left(\mathbf{\bar{q}}_{p}^{n} - \mathbf{\tilde{q}}_{p}^{n} \right) \left(\mathbf{q}_{r}^{n} \right)^{T}}{\left\| \mathbf{q}_{r}^{n} \right\|_{2}^{2}} \quad \text{where } \mathbf{\tilde{q}}_{p}^{n} = \mathbf{q}_{p,ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n}$$

Sampling Points Adaptation (every *z_s* time step)

$$\mathbf{S}_{n} = \arg\min_{\mathbf{S}_{n}} \left\| \mathbf{F}_{n} - \mathbf{V}^{n} \left(\mathbf{S}_{n} \mathbf{V}^{n} \right)^{+} \mathbf{S}_{n} \mathbf{F}_{n} \right\|_{2}^{2}$$
Estimate full - state info at all the points:

$$\mathbf{r} \left(\overline{\mathbf{q}}_{p}^{n} \right) = \frac{\mathbf{q} \left(\overline{\mathbf{q}}_{p}^{n} \right) - \mathbf{q} \left(\widetilde{\mathbf{q}}_{p}^{n-1} \right)}{\Delta t} - \mathbf{f} \left(\overline{\mathbf{q}}_{p}^{n} \right) = 0$$

$$\mathbf{v}^{**} \text{expensive step so the sampling points are adapted less frequently}$$
Evaluate interpolation error:

$$\mathbf{e}_{s}^{n} = \overline{\mathbf{q}}_{p}^{n} - \mathbf{V}^{n} \left(\mathbf{S}_{n} \mathbf{V}^{n} \right)^{+} \mathbf{S}_{n} \overline{\mathbf{q}}_{p}^{n}$$

$$\downarrow$$

Assign sampling points to highest values of \mathbf{e}_s^n

Adaptive ROM Algorithm

Solve FOM for a small time window $(w_{init}) \rightarrow$ obtain the initial basis V⁰ and sampling points S₀ for $n = w_{init} + 1, ..., M$

Propagate the reduced states:

$$\mathbf{q}_{r}^{n} = \underset{\mathbf{q}_{r}^{n}}{\operatorname{arg\,min}} \left\| \mathbf{V}^{n-1} \left(\mathbf{S}_{n-1}^{T} \mathbf{V}^{n-1} \right)^{+} \mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{q}_{p,ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n} \right) \right\|_{2}^{2} \quad \Rightarrow \quad \left[\mathbf{q}_{r}^{n-1} \rightarrow \mathbf{q}_{r}^{n} \right]$$

if $\operatorname{mod}(n, z_{s}) == 0$ or $n == w_{\operatorname{init}} + 1$ **then** Estimate the full-model state: $\mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) = 0$ and $\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} = \tilde{\mathbf{q}}_{p}^{n}$ Update the basis: $\mathbf{V}^{n} = \mathbf{V}^{n-1} + \delta \mathbf{V}^{n-1}$ with $\delta \mathbf{V}^{n-1} = \left(\overline{\mathbf{q}}_{p}^{n} - \widetilde{\mathbf{q}}_{p}^{n} \right) \left(\mathbf{q}_{r}^{n} \right)^{T} / \left\| \mathbf{q}_{r}^{n} \right\|_{2}^{2}$ Update the sampling points: $\mathbf{e}_{s}^{n} = \overline{\mathbf{q}}_{p}^{n} - \mathbf{V}^{n} \left(\mathbf{S}_{n} \mathbf{V}^{n} \right)^{+} \mathbf{S}_{n} \overline{\mathbf{q}}_{p}^{n} \implies \overline{\mathbf{S}_{n-1} \rightarrow \mathbf{S}_{n}}$

else

Estimate the full-model state: $\mathbf{S}_{n-1}^{T}\mathbf{r}\left(\mathbf{S}_{n-1}\mathbf{S}_{n-1}^{T}\mathbf{\bar{q}}_{p}^{n}\right)=0$ and $\mathbf{S}_{n-1}^{*}\mathbf{S}_{n-1}^{*T}\mathbf{\bar{q}}_{p}^{n}=\mathbf{\tilde{q}}_{p}^{n}$ Update the basis: $\mathbf{V}^{n}=\mathbf{V}^{n-1}+\delta\mathbf{V}^{n-1}$ with $\delta\mathbf{V}^{n-1}=\left(\mathbf{\bar{q}}_{p}^{n}-\mathbf{\tilde{q}}_{p}^{n}\right)\left(\mathbf{q}_{r}^{n}\right)^{T}/\left\|\mathbf{q}_{r}^{n}\right\|_{2}^{2}$ end if

end for

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
 - Incorporation of non-local coherence in adaptive ROM algorithm
 - Accuracy, efficiency, and *parametric* preditions
- Test Case II: 2D Single-injector Rocket Combustor
- **Test Case III**: 2D Premixed RDE
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Test Case I: 1D Freely Propagating Laminar Flame

- Inlet BC: Non-reflective
- **Outlet BC:** Non-reflective with external acoustic perturbations
- Single-step global reaction:
 - Reactant \rightarrow Product
- * Test cases available in PERFORM https://romworkshop.engin.umich.edu/

Adaptive ROM shows difficulties in predicting non-local dynamics

- *Offline* training: 10 snapshots
- Online testing: 4500 snapshots
- ROM dimension: 5
- Sampling points: $10\% + z_s$: 5
- Current adaptive ROM algorithm does not accommodate for non-local dynamic

Solutions between sampling points update

- ** inaccurate ROM solutions at the *unsampled* points in between sampling point update
- \rightarrow inaccurate full-state info estimate when the points are sampled
- \rightarrow inaccurate basis update \rightarrow rapid accumulations of errors ...

Estimate full-state information FOM equation residual incorporating non-local full-model state

If not update sampling

$$\underbrace{\text{at sampled points:}}_{\text{at sampled points:}} \mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \mathbf{\bar{q}}_{p}^{n} \right) = \underbrace{\frac{\mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \mathbf{\bar{q}}_{p}^{n} \right) - \mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \mathbf{\bar{q}}_{p}^{n} \right)}{\Delta t} - \mathbf{S}_{n-1}^{T} \mathbf{f} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \mathbf{\bar{q}}_{p}^{n} \right) = 0$$

$$\underbrace{\text{at unsampled points:}}_{\text{at unsampled points:}} \mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \mathbf{\bar{q}}_{p}^{n} = \mathbf{\tilde{q}}_{p}^{n} \text{ where } \mathbf{\tilde{q}}_{p}^{n} = \mathbf{q}_{p,ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n} \text{ and } \mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \bigcup \mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} = \mathbf{I}$$

If update sampling

$$\underline{\text{at sampled points:}} \quad \mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) = \frac{\mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) - \mathbf{S}_{n-1}^{T} \mathbf{q} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n-1} \right)}{\Delta t} - \mathbf{S}_{n-1}^{T} \mathbf{f} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) = 0$$

$$\underline{\text{at unsampled points:}} \quad \mathbf{S}_{n-1}^{*T} \mathbf{r}^{*} \left(\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} \right) = \frac{\mathbf{S}_{n-1}^{*T} \mathbf{q} \left(\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} \right) - \mathbf{S}_{n-1}^{*T} \mathbf{q} \left(\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n-2s} \right)}{z_{s} \Delta t} - \mathbf{S}_{n-1}^{*T} \mathbf{f} \left(\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} \right) = 0$$

** no additional computational cost required

Adaptive ROM Algorithm Incorporating Non-Local Info

Solve FOM for a small time window $(w_{init}) \rightarrow$ obtain the initial basis V⁰ and sampling points S₀ for $n = w_{init} + 1, ..., M$

Propagate the reduced states:

$$\mathbf{q}_{r}^{n} = \underset{\mathbf{q}_{r}^{n}}{\operatorname{arg\,min}} \left\| \mathbf{V}^{n-1} \left(\mathbf{S}_{n-1}^{T} \mathbf{V}^{n-1} \right)^{+} \mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{q}_{p,ref} + \mathbf{V}^{n-1} \mathbf{q}_{r}^{n} \right) \right\|_{2}^{2} \implies \left[\mathbf{q}_{r}^{n-1} \rightarrow \mathbf{q}_{r}^{n} \right]$$

if $\operatorname{mod}(n, z_{s}) == 0 \text{ or } n == w_{\operatorname{init}} + 1$ **then** Estimate the full-model state: $\mathbf{S}_{n-1}^{T} \mathbf{r} \left(\mathbf{S}_{n-1} \mathbf{S}_{n-1}^{T} \overline{\mathbf{q}}_{p}^{n} \right) = 0$ and $\mathbf{S}_{n-1}^{*T} \mathbf{r} \left(\mathbf{S}_{n-1}^{*} \mathbf{S}_{n-1}^{*T} \overline{\mathbf{q}}_{p}^{n} \right) = 0$ Update the basis: $\mathbf{V}^{n} = \mathbf{V}^{n-1} + \delta \mathbf{V}^{n-1}$ with $\delta \mathbf{V}^{n-1} = \left(\overline{\mathbf{q}}_{p}^{n} - \widetilde{\mathbf{q}}_{p}^{n} \right) \left(\mathbf{q}_{r}^{n} \right)^{T} / \left\| \mathbf{q}_{r}^{n} \right\|_{2}^{2}$ Update the sampling points: $\mathbf{e}_{s}^{n} = \overline{\mathbf{q}}_{p}^{n} - \mathbf{V}^{n} \left(\mathbf{S}_{n} \mathbf{V}^{n} \right)^{+} \mathbf{S}_{n} \overline{\mathbf{q}}_{p}^{n} \Rightarrow \overline{\mathbf{S}_{n-1} \to \mathbf{S}_{n}}$

else

Estimate the full-model state: $\mathbf{S}_{n-1}^{T}\mathbf{r}\left(\mathbf{S}_{n-1}\mathbf{S}_{n-1}^{T}\mathbf{\bar{q}}_{p}^{n}\right)=0$ and $\mathbf{S}_{n-1}^{*T}\mathbf{\bar{q}}_{p}^{n}=\mathbf{\tilde{q}}_{p}^{n}$ Update the basis: $\mathbf{V}^{n}=\mathbf{V}^{n-1}+\delta\mathbf{V}^{n-1}$ with $\delta\mathbf{V}^{n-1}=\left(\mathbf{\bar{q}}_{p}^{n}-\mathbf{\tilde{q}}_{p}^{n}\right)\left(\mathbf{q}_{r}^{n}\right)^{T}/\left\|\mathbf{q}_{r}^{n}\right\|_{2}^{2}$ end if

end for

Incorporating non-local information is important

- *Offline* training: 10 snapshots
- Online testing: 4500 snapshots
- ROM dimension: 5 + Sampling points: $10\% + z_s$: 5

Performance of Adaptive ROM

Adaptive ROM inherently enables parametric predictions

** <u>Offline training</u>: 10 snapshots with f = 50kHz and $A_0 = 0.10$

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
- Test Case II: 2D Single-injector Rocket Combustor
 - Long-term future-state predictions
 - Transience and parametric predictions
- Test Case III: 2D Premixed RDE
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Test Case II: 2D Single-injector Rocket Combustor

• Inlet BC: $T_{fuel} = 300K (100\% CH_4)$

 $T_{ox} = 700K (42\% O_2 + 58\% H_2O)$

- **Outlet BC:** Non-reflective with external acoustic perturbations
- Single-step global reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Data available at https://afcoe.engin.umich.edu/benchmark-data

Adaptive ROM: 2D Single-injector Rocket Combustor

- Initial training window: 0.01 ms + Dimension: 5 + Sampling points: 1.0%
 - <u>Prediction period</u>: ~ 6 ms

Adaptive ROM enables *transient* & *parametric* predictions

Training window: 0.01 ms with 100% m
_{ox} + Dimension: 5 + Sampling points: 1.0% + z_s = 10
 <u>Prediction period</u>: ~ 2 ms with 50% m
_{ox}

Adaptive ROM enables *transient* & *parametric* predictions

Training window: 0.01 ms with 100% m
_{ox} + Dimension: 5 + Sampling points: 1.0% + z_s = 10
 <u>Prediction period</u>: ~ 2 ms with 150% m
_{ox}

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
- Test Case II: 2D Single-injector Rocket Combustor
- Test Case III: 2D Premixed RDE
 - Parametric and initial transience predictions
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Test Case III: 2D Premixed RDE

- Grid points: 178,290
- Time step: 2 ns

POD Residual Energy vs Training Data Amount

Slow decays of Kolmogorov N-width with linear subspace approximation

• Significant number of basis modes are required to recover accurate representations of the target physics

Convergence of low-rank approx. versus training data amount

• 1-cycle training data seems to be sufficient for accurate future-state predictions

FOM (\mathbf{q}_p) vs Projected FOM ($\mathbf{q}_{p,ref} + \mathbf{V}\mathbf{V}^T \mathbf{q}_p$)

• 1-cycle training data is sufficient for accurate future-state predictions

Pressure, kPa 100 1080 2060 3040 4020 5000

2 cycles, 566 modes

3 cycles, 626 modes

FOM (\mathbf{q}_p) *vs* **Projected FOM** ($\mathbf{q}_{p,ref}$ + **VV**^T \mathbf{q}_p): Predicting $V_{in} = \underline{100m/s}$

- POD basis trained using snapshots from V_{in} = 150 m/s
- Static basis exhibits deficiency in parametric predictions

Pressure, kPa 100 1080 2060 3040 4020 5000

2 cycles, 566 modes

3 cycles, 626 modes

FOM (\mathbf{q}_p) *vs* **Projected FOM** ($\mathbf{q}_{p,ref}$ + **VV**^T \mathbf{q}_p): Predicting $V_{in} = 200 \text{m/s}$

- POD basis trained using snapshots from V_{in} = 150 m/s
- Static basis exhibits deficiency in parametric predictions

FOM

2 cycles, 566 modes

3 cycles, 626 modes

FOM vs Online Adaptive ROM ($V_{in} = 150 \text{m/s}$)

- Initial *offline* training window: $w_{init} = 10$
- Sampling points update frequency: $z_s = 5$
- **Sampling points selection**: the magnitude of pressure gradients $\|\nabla \mathbf{p}\|_2$

FOM

Pressure, kPa 100 1080 2060 3040 4020 5000

Adaptive ROM

(<u>5% sampling</u>, accurately predict the detonation wave)

Sampling Points Distributions

FOM vs Online Adaptive ROM ($V_{in} = 100 \text{ m/s}$)

- Initial offline training window: $w_{init} = 10 @ V_{in} = 150 m/s$
- Sampling points update frequency: $z_s = 5$
- **Sampling points selection**: the magnitude of pressure gradients $\|\nabla \mathbf{p}\|_2$

FOM

Adaptive ROM

(<u>5% sampling</u>, accurately predict the transient dynamics)

Sampling Points Distributions

Pressure, kPa 100 1080 2060 3040 4020 5000

FOM vs Online Adaptive ROM ($V_{in} = 200 \text{m/s}$)

- Initial offline training window: $w_{init} = 10 @ V_{in} = 150 m/s$
- Sampling points update frequency: $z_s = 5$
- **Sampling points selection**: the magnitude of pressure gradients $\|\nabla \mathbf{p}\|_2$

FOM

Adaptive ROM

(<u>5% sampling</u>, predicted lagging detonation wave)

Sampling Points Distributions

Pressure, kPa 100 1080 2060 3040 4020 5000

FOM vs Online Adaptive ROM ($V_{in} = 150 \text{ m/s}$ initial transience)

- Initial *offline* training window: w_{init} = 10 from 0.02*ms*
- Sampling points update frequency: $z_s = 5$
- **Sampling points selection**: the magnitude of pressure gradients $\|\nabla \mathbf{p}\|_2$

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
- Test Case II: 2D Single-injector Rocket Combustor
- **Test Case III**: 2D Premixed RDE
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Test Case IV: 3D Single-injector Rocket Combustor

- $0.1ms \text{ offline training} \rightarrow 10ms \text{ prediction}$
- Dimension: 5

FOM

ROM

• Sampling points update time steps (z_s) : 5

Unsteady Temperature Field

T, K 300 720 1140 1560 1980 2400

• Points sampled: 0.5%

Outline

- Adaptive ROM Algorithm
- Test Case I: 1D Freely Propagating Laminar Flame
- Test Case II: 2D Single-injector Rocket Combustor
- Test Case III: 2D Premixed RDE
- Test Case IV: 3D Single-injector Rocket Combustor
- Test Case V: 2D Single Injector with Variable Recess Length

Test Case V: 2D Single Injector with Variable Recess Length

Step 1: offline Training (FOM simulation with *L*_{recess} = 5.7 mm)

• *Offline* training cost: 2ms transience + 0.1 ms (1000 time steps) training period

Step 2: map the POD basis from L_{recess} = 5.7 mm to other geometries

- The different geometries share similar mesh topology in the recess region
- The mapped POD basis is used to initialize the adaptive ROM

Step 3: Online prediction with adaptive ROM – Unsteady Temperature

- The adaptive ROMs are used to predict the dynamics from 2 12ms
 - 6 modes + basis updated every time step + 1% sampling points + z_s = 5

Summary

An adaptive reduced-order model formulation is developed and implemented to *break* the Kolmogorov barrier and *enable* predictions of turbulent reacting flows

- Incorporating non-local information in ROM adaptation inherently enables predictions of dynamics exhibiting both local and non-local coherence
- The adaptive ROMs have been demonstrated using 1D, 2D, and 3D test problems to provide accurate predictions of future state, transience, and parametric behaviors

Huang and Duraisamy, JCP 2023

Backup

What's next? Improve scalability of adaptive ROM

Adaptive ROM (5% sampling)

**no points are sampled in this partition

**most of the points are sampled in this partition

Implementation of *Hyper-reduced* **MP-LSVT**

• Portable ROM module could be developed *but* <u>the implementation of hyper-reduction</u> <u>is code dependent</u>

Current Hyper-reduction Implementation in GEMS

Compatible with overset mesh solver

do $i = 1, \ldots, N_{cell}$ if (iblank(i) == 0) then cycle else if (iblank(i) == 1) then evaluate **r** else if ($iblank(i) \ge 2$) then interpolate state variables endif

end do

To provide flux for the sampling point, the neighboring stencil cells also need to be included and interpolated using DEIM

Implementation of *Adaptive Hyper-reduced* **MP-LSVT**

