
Learning non-intrusive data-driven reduced models: application
to large-scale systems

Ionut,-Gabriel Farcas,1, Rayomand P. Gundevia2, Ramakanth Munipalli3, and Karen Willcox1

Workshop on Data-driven & Reduced Order Modeling for Multi-Scale Problems

1Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX
2Jacobs Engineering Group, Inc., Edwards Air Force Base, CA

3AFRL Combustion Devices (RQRC), Edwards Air Force Base, CA

August 31, 2023



Learning predictive data-driven reduced models of rotating-detonation rocket

engine combustion chambers via Operator Inference

Goals

• construct physics-based data-driven reduced models of large-scale
RDRE simulations with sufficient engineering accuracy

• use these ROMs for downstream tasks such as design optimization

Computational challenges

• the high-fidelity LES simulations are large-scale and computationally very expensive (a single
simulation typically requires O(106) core-hours on supercomputers)

• the resulting training data sets are often sparse

• they comprise down-sampled time instants from the high-fidelity simulation

• only few parametric instances can realistically be simulated to generate training data
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Part I: constructing ROMs for large-scale simulations for predictions
beyond the training time horizon



Discrete operator inference: general idea

• starting point: a physics-based model, typically
described by PDEs or ODEs

• variable transformations that expose polynomial
structure in the model

• lens of projection to define the form of a
structure-preserving low-dimensional model


define the structure of the reduced model

Operator inference learning problem

• non-intrusive learning by inferring reduced model operators from data

argmin
Ô

∥D̂Ô− R̂∥2F + regularization

• Ô: low-dimensional operators define the reduced model as a discrete system
• D̂, R̂: data matrix/forcing from simulation and/or experimental data
• minimum residual formulation leads to linear least-squares minimization
• regularization is key to reduce overfitting, account for model misspecification etc.
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∥D̂Ô− R̂∥2F + regularization
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Steps to perform discrete operator inference
I. Start: full-order model. Suppose the process of interest is described through (possibly after applying
a lifting transformation) the high-dimensional quadratic discrete model

w[k + 1] = Aw[k] +H(w[k]⊗w[k])

II. Discrete operator inference:

1. training data: compute a set of nt full-order model solutions (snapshots)
2. training data manipulation (lifting, centering, scaling) to get the snapshot matrix of the

transformed variables Q ∈ Rn×nt

3. subspace identification: determine rank-r reduced basis Vr ∈ Rn×r via the (thin) singular value
decomposition of Q

4. projection: project each transformed snapshot: Q̂[k] = V⊤
r Q[k] ∈ Rr×nt

5. learn reduced operators Â ∈ Rr×r, Ĥ ∈ Rr×r2 , and ĉ ∈ Rr via operator inference with
regularization

III. Finish: reduced-order model. The learned reduced operators define the ROM

q̂[k + 1] = Âq̂[k] + Ĥ (q̂[k]⊗ q̂[k]) + ĉ

We then use the reduced model to issue predictions beyond the training time horizon
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q̂[k + 1] = Âq̂[k] + Ĥ (q̂[k]⊗ q̂[k]) + ĉ

We then use the reduced model to issue predictions beyond the training time horizon

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA# AFRL-2022-5627 3/32



Steps to perform discrete operator inference
I. Start: full-order model. Suppose the process of interest is described through (possibly after applying
a lifting transformation) the high-dimensional quadratic discrete model

w[k + 1] = Aw[k] +H(w[k]⊗w[k])

II. Discrete operator inference:

1. training data: compute a set of nt full-order model solutions (snapshots)
2. training data manipulation (lifting, centering, scaling) to get the snapshot matrix of the

transformed variables Q ∈ Rn×nt

3. subspace identification: determine rank-r reduced basis Vr ∈ Rn×r via the (thin) singular value
decomposition of Q

4. projection: project each transformed snapshot: Q̂[k] = V⊤
r Q[k] ∈ Rr×nt
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Numerical demonstration



Modeling the combustion chamber of a rotating detonation rocket engine
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Modeling the combustion chamber of a rotating detonation rocket engine

non-premixed

fuel injection
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Modeling the combustion chamber of a rotating detonation rocket engine

• LES simulations of the reactive, viscous 3D Navier-Stokes equations

• skeletal chemistry mechanism based on the Foundational Fuel
Chemistry Model (FFCMy-30)

• non-premixed fuel injection (gaseous methane and oxygen)

• injector design with 72 discrete injector pairs
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Modeling the combustion chamber of a rotating detonation rocket engine

1. Generate training data + data manipulation

• ṁ = 0.267 kg · s−1 and Φ = 1.16

• 2 ms of full-state solutions generated ∼6M CPU hours on
> 16K cores

• the original simulation data has been interpolated on a
structured mesh comprising nx = 4, 204, 200 spatial DoF

• time step size ∆t ∼ 10−9 s

• available data: 501 down-sampled snapshots over
[2.50, 3.75] ms (∼4 periods of two-wave system)

• 18 transformed state variables: specific volume, pressure,
3D velocity, temperature, 12 species mass fractions (full
chemistry data)

• training data: snapshot matrix Q ∈ R76M×375
Two dominant co-rotating waves in the
quasi-limit-cycle behavior of the flow
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Modeling the combustion chamber of a rotating detonation rocket engine

2. Compute POD basis

• snapshot matrix of transformed variables

• scale and center snapshot data

• compute POD basis Vr ∈ R76M×r

• low-data regime limits size of the non-intrusive ROM
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Modeling the combustion chamber of a rotating detonation rocket engine

POD mode 1 -> 4

POD mode 5 -> 8
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Modeling the combustion chamber of a rotating detonation rocket engine

Two-dimensional phase portraits of POD amplitudes
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OpInf inference problem
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Modeling the combustion chamber of a rotating detonation rocket engine

3. Infer reduced operators

• compute reduced snapshot matrix
Q̂ = V⊤

r Q ∈ Rr×375

• learn a fully discrete quadratic ROM

• solve linear least squares to infer reduced operators
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OpInf reduced model relative error
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OpInf predictions for two-dimensional phase portraits
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One-dimensional circumferential pressure profiles
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One-dimensional circumferential temperature profiles
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One-dimensional circumferential fuel mass fraction profiles
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One-dimensional circumferential oxidizer mass fraction profiles
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Part II: towards predictive parametric ROMs of large-scale RDRE
combustion chamber simulations



Parametric discrete operator inference: general idea

• a parametric physics-based model,
typically described by PDEs or ODEs

• variable transformations that expose
polynomial structure in the model

• lens of projection to define the form
of a structure-preserving
low-dimensional parametric model


define the structure of the parametric reduced model

Discrete parametric operator inference learning problem

• non-intrusive learning by inferring reduced model parametric operators from data

argmin
Ô(µµµ)

∥D̂Ô(µµµ)− R̂∥2F + regularization

• Ô(µµµ): low-dimensional parametric operators define the reduced model as a discrete system
• D̂, R̂: data matrix/forcing from simulation and/or experimental data
• minimum residual formulation leads to linear least-squares minimization
• regularization is key to reduce overfitting, account for model misspecification etc.
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• Ô(µµµ): low-dimensional parametric operators define the reduced model as a discrete system
• D̂, R̂: data matrix/forcing from simulation and/or experimental data
• minimum residual formulation leads to linear least-squares minimization
• regularization is key to reduce overfitting, account for model misspecification etc.

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA# AFRL-2022-5627 18/32



Steps to perform parametric discrete operator inference
I. Start: full-order model that depends on a d-dimensional parameter µµµ ∈ D ⊂ Rd. Suppose that the
process of interest can be described (possibly after a lifting transformation) through the
high-dimensional parametric quadratic discrete model

w[k + 1] = A(µµµ)w[k] +H(µµµ) (w[k]⊗w[k])

We seek a to construct a parametric reduced model via OpInf with reduced dimension r ≪ n.

To this end, we consider a quadratic-bilinear model form for the parametric model:

w[k + 1] = A0w[k]︸ ︷︷ ︸
linear

+

d∑
i=1

µiAiw[k]︸ ︷︷ ︸
bilinear

+H0 (w[k]⊗w[k])︸ ︷︷ ︸
quadratic

+

d∑
i=1

µiHi (w[k]⊗w[k])︸ ︷︷ ︸
quadratic-linear

,

which is obtained by assuming an affine dependency on the parameters, Taylor series approximation of
the parametric operators etc.
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which is obtained by assuming an affine dependency on the parameters, Taylor series approximation of
the parametric operators etc.
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Steps to perform parametric discrete operator inference

II. Parametric OpInf for the quadratic-bilinear ROM:

1. training data: compute nt full-order model snapshots for each training parameter instance
µµµ1, . . . ,µµµm ∈ Rd

2. training data manipulation (lifting, centering, scaling) to obtain the snapshot matrix of transformed
data Q ∈ Rn×mnt

3. subspace identification: rank-r global POD basis Vr ∈ Rn×r using the thin SVD of Q

4. projection: project each snapshot to obtain Q̂ = V⊤
r Q ∈ Rr×mnt

5. learn reduced operators Âi, Ĥi and ĉi for i = 0, 1, . . . , d via operator inference with regularization
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Steps to perform parametric discrete operator inference

III. Finish: parametric reduced-order model.
The learned reduced operators define the parametric quadratic-bilinear reduced model

q̂[k + 1] = Â0q̂[k] +

d∑
i=1

µiÂiŝ[k] + Ĥ0 (q̂[k]⊗ q̂[k]) +

d∑
i=1

µiĤi (q̂[k]⊗ q̂[k]) + ĉ0 +

d∑
i=1

µiĉi

Given µµµ ∈ Rd, we use the parametric ROM to issue parametric predictions beyond the training set
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Numerical demonstration



Parametric modeling of an RDRE combustion chamber

• LES simulations of the reactive, viscous 3D Navier-Stokes equations

• skeletal chemistry mechanism based on the Foundational Fuel
Chemistry Model (FFCMy-30)

• non-premixed fuel injection (gaseous methane and oxygen)

• injector design with 72 discrete injector pairs

• parametric variations in the flow conditions

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. PA# AFRL-2022-5627 22/32



Parametric modeling of an RDRE combustion chamber

Parametric description

• parametric variations in flow conditions (mass flow-rate, ṁ [kg · s−1], and equivalence ratio, Φ)

• these variations are characterized in our model using a scalar parameter µ ∈ R

µ =
ṁ

ṁ0
+

Φ

Φ0
,

where ṁ0 and Φ0 are the respective maximum mass flow-rate and equivalence ratio

• we have simulation data for three parameter instances

µ
Flow

Condition
ṁ [kg · s−1] Φ

Time
Interval

Periods
Dominant
Waves

Secondary
Waves

µ1 = 1.41 nominal 0.267 1.16 [3.7525, 4.0000] ms 1.97 5 0

µ2 = 1.73 high Φ 0.266 1.71 [1.8425, 2.0900] ms 1.64 6 8

µ3 = 1.55 high ṁ 0.333 1.09 [3.7525, 4.0000] ms 1.97 5 0
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Parametric modeling of an RDRE combustion chamber

1. Generate training data + data manipulation

• 2 ms of full-state solutions for all three parameter
instances generated ∼6M CPU hours on > 16K cores

• the original simulation data has been interpolated on a
structured mesh comprising nx = 4, 204, 200 spatial DoF

• time step size ∆t ∼ 10−9 s

• available data: 100 down-sampled snapshots for each
parameter instance (about 0.25 ms of physical time)

• 8 transformed state variables: specific volume, pressure,
3D velocity, temperature, 2 species mass fractions (fuel
and oxidizer)

• train ROM using data corresponding to µ1 and µ2, make
ROM predictions for µ3

• training data: snapshot matrix Q ∈ R34M×200
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Parametric modeling of an RDRE combustion chamber

2. Compute (global) POD basis

• snapshot matrix of transformed variables

• scale and center snapshot data

• compute POD basis Vr ∈ R34M×r

• low-data regime limits size of the non-intrusive ROM
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Parametric modeling of an RDRE combustion chamber

3. Inference reduced operators

• compute reduced snapshot matrix
Q̂ = V⊤

r Q ∈ Rr×200

• learn a fully discrete parametric ROM

• solve linear least squares to infer reduced operators
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Due to the scarcity of the available data, we also consider linear parametric reduced models
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One-dimensional circumferential pressure profiles: 1st training
parameter (nominal flow condition)
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One-dimensional circumferential pressure profiles: 2nd training
parameter (high equivalence ratio)
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One-dimensional circumferential pressure profile prediction outside
of the training set (3rd parameter, high mass flow-rate case)
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Outlook

Domain-decomposed data-driven reduced models

• basis localization can lead to faster singular value decay → smaller ri, although now have ROM of
dimension ri for each subdomain i = 1, 2, . . . , k

• the decomposition also mitigates computational complexity of offline snapshot processing

Preprocess the training data set via filtering

• filter the snapshots in the training data set – variable by variable – prior to training the ROM

• filtering can reduce overfitting, improve the prediction accuracy of the ROM, and improve the
condition of the Operator Inference learning problem
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Summary - Non-intrusive ROMs

• non-intrusive formulation enables rapid deployment, ROM derivation without access to source
code, and variable transformations to promote structure

• it moreover enables ROM development across multiple sites without the need to transfer large-scale
data sets (e.g., training data generation, data manipulation, and POD basis computation at ARFL,
and OpInf ROM construction and postprocessing at UT Austin)

• Operator Inference ROMs are completely decoupled from CFD code and very fast to simulate

• our ROMs evaluate within milliseconds on a laptop computer

• Operator Inference can be used to construct both ROMs for predictions beyond the training time
horizon and parametric ROMs

• slow singular value decay is a challenge for linear-subspace approximations

• generation of training data is a major expense; for realistic combustion problems we generally lack
sufficient training data to fully resolve the dynamics

• domain decomposition and filtering are promising approaches to address these challenges
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