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The code for the tutorial is available at
https://github.com/ionutfarcas/OpInf-tutorial

https://github.com/ionutfarcas/OpInf-tutorial


Learning dynamical systems from data: general idea

Given (1) a physics/engineering system, and (2) a training data set (experimental or simulation)

Construct a surrogate/reduced model that recovers the given data and provides a predictive capability
to rapidly simulate unseen conditions

A taxonomy of approaches [Ghattas, Willcox; Acta Numerica, 2021]

Black-box

• purely data-driven

• generally don’t exploit any
knowledge about the
physics of the problem

• require large amounts of
high-quality data

• can be unsuitable for
large-scale applications

Glass-box/non-intrusive

• generally data-driven

• they look inside the box
but do not modify it

• exploit the knowledge of
the underlying model,
physical principles etc.

• can be suitable for
large-scale applications

Intrusive

• they look inside the box
and modify it (e.g., modify
the underlying code)

• rich mathematical theory

• can be suitable for
large-scale applications
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Learning dynamical systems from data: goals

Why reduced models?

• to enable rapid/real-time state predictions

• to enable downstream parametric tasks such as design
optimization or uncertainty quantification

Computational challenges

• the high-fidelity simulations are large-scale and computationally very expensive (e.g., O(106)
core-hours on supercomputers)

• the resulting training data sets are often sparse

• they comprise down-sampled time instants from the high-fidelity simulation

• only few parametric instances can realistically be simulated to generate training data
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The Operator Inference problem

Given (1) a physics/engineering system with known governing equations, and (2) a set of data in the
form of state snapshots (experimental or simulation)

Infer a reduced-order model that recovers the given data and provides a predictive capability to rapidly
simulate unseen conditions

argminO∥DO−R∥

• O: low-dimensional operators that
define the reduced model

• D,R data matrix/forcing from
simulation and/or experimental data

We use:

• the physics to define the structured form of the
model we seek

• projection-based model reduction to cast the
inference in a reduced coordinate space and to
provide error estimates in some settings

• numerical linear algebra to achieve efficient
scalable algorithms

• inverse theory to analyze the structure of the
resulting problem and treat it numerically

The reduced model form is inspired by classical intrusive physics-based model reduction but
the operators are learned directly from data
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Operator inference: general idea

• starting point: a physics-based model, typically
described by PDEs or ODEs

• variable transformations that expose polynomial
structure in the model

• lens of projection to define the form of a
structure-preserving low-dimensional model


define the structure of the reduced model

Operator inference learning problem

• non-intrusive learning by inferring reduced model operators from data

argmin
Â,Ĥ

∥∥∥∥∥∥Ŝ⊤
Â

⊤
+
(
Ŝ⊗ Ŝ

)⊤
Ĥ

⊤
−

(
dŜ

dt

)⊤
∥∥∥∥∥∥
2

F

+ regularization

• Â, Ĥ are the low-dimensional operators define the reduced model as a discrete system
• Ŝ is obtained by projecting the snapshots generated by the high-fidelity code
• minimum residual formulation leads to linear least-squares minimization
• regularization is key to reduce overfitting, account for model misspecification etc.
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Ŝ⊗ Ŝ
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Setup for high-fidelity simulations I

Let Ω ⊂ Rd denote the physical domain and let [tinit, tfinal], with tinit the initial time and tfinal the final
time denote the time domain. The nonlinear PDE

∂s

∂t
= f(s),

where

s =


s1(x, t)
s2(x, t)

...
sns

(x, t)

 and f(s) =


f1(s)
f2(s)
...

fns
(s)


defines a dynamical system for the ns-dimensional vector state field s, where sj : Ω× [tinit, tfinal] → R
for j = 1, 2, . . . , ns, and the nonlinear function f maps the state field to its time derivative.
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Setup for high-fidelity simulations II

We consider a semi-discrete model that depends on the spatially discretized state vector s ∈ Rnxns at
some collection of nx spatial points (e.g., in a finite difference, finite element or finite volume
discretization), where nx is typically (very) large. This results in a large-scale system of nonlinear ODEs

ds

dt
= f(t, s), s(tinit) = sinit,

where f : [tinit, tfinal]× Rnxns → Rnxns discretizes f , and sinit is the initial condition.
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Example: modeling a 45◦-degree sector of the combustion chamber of a

rotating detonation rocket engine [Lietz et al., 2019]

• 45-degree sector of the full rotating detonation rocket engine (RDRE)
• large-eddy simulation (LES) of the reactive, viscous 3D Navier-Stokes equations
• modified version of the Westbrook-Dryer mechanism for the purposes of methane-oxygen

detonation ( originally developed for methane-air combustion)
• non-premixed fuel injection (gaseous methane and oxygen)
• the sector has nine injectors (72 in total for the full engine)
• a single wave travels stably in one direction
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Steps to perform Operator Inference

1. Acquiring training data

• we collect nt ∈ N time instants s(t) from the high-fidelity simulation code over training time
horizon [tinit, ttrain], where ttrain < tfinal into a snapshot matrix

S =

 | | |
s1 s2 . . . snt

| | |

 ∈ Rnxns×nt ,

where on the kth column we have the state solution (snapshot) at time tk, i.e., sk = s(tk)

Remarks

• the training data set is usually saved to disk while performing the high-fidelity simulation

• for computationally expensive large-scale applications, the available training data sets are generally
sparse and down-sampled

• even when the data sets are sparse, the disk size requirements for storage can be (very) large
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Steps to perform Operator Inference

2. Training data manipulation: lifting transformations

• the original OpInf formulation [Peherstorfer, Willcox; CMAME, 2016] targets systems with
polynomial nonlinearities

• for more general types of nonlinearities/higher-order polynomial terms, lifting transformations can
be used to expose (sometimes approximate) (lower degree) polynomial structure in the lifted
governing equations [Qian et al.; Physica D, 2020]

• let T : Rns → Rnw denote such a transformation with nw ≥ ns transformed variables such that
the given nonlinear PDE is polynomial in w = T (s)1

• for simplicity, let n = nxnw denote the (large) state dimension after lifting the original variables

• for each column in the given data matrix S, we apply T point-wisely to obtain

W =

 | | |
w1 w2 . . . wnt

| | |

 =

 | | |
T(s1) T(s2) . . . T(snt

)
| | |

 ∈ Rn×nt

1please refer to [Qian et al.; Physica D, 2020] for the mathematical details
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Example lifting transformation
One-dimensional Euler equations in conservative variables formulation:

∂

∂t

 ρ
ρu
E

 = − ∂

∂x

 ρu
ρu2 + p
(E + p)u

 , E =
p

γ − 1
+

1

2
ρu2,

with state s = [ρ ρu E]⊤ comprising the density ρ, specific momentum ρu, and energy E.
This representation contains several nonlinear terms that are not quadratic in the conservative state.

For constant heat capacity ratio γ, the transformation T :

 ρ
ρu
E

→

 u
p

ζ = 1/ρ

 leads to

∂u

∂t
=− u

∂u

∂x
− ζ

∂p

∂x
∂p

∂t
=− γp

∂u

∂x
− u

∂p

∂x
∂ζ

∂t
=− u

∂ζ

∂x
+ ζ

∂u

∂x
,

i.e., a quadratic representation in the specific volume state variables w = [u p ζ]⊤.
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Steps to perform Operator Inference

2. Training data manipulation: centering and scaling

• in problems with multiple variables, the state data can have significantly different scales
• for example, in a reactive flow simulation, the scales can vary from the order of 104 to 106 Pa for

pressure to between 0 and 1 for the species mass fractions
• we therefore center and scale the transformed data variable-by-variables to ensure that the

transformed variables are on the same scale
• we first center the transformed snapshot matrix around Wref ∈ Rn

Wcen = W−Wref,

• we then scale the centered snapshot matrix of transformed variables

Q = scale(Wcen),

to ensure that the variables in Q are on the same scale

Remarks

• the choice of Wref and the scaling function can have a significant impact on the accuracy of the
resulting reduced model
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Steps to perform Operator Inference

After training data manipulation

• let us assume, without loss of generality, that after lifting, the high-fidelity model is quadratic in
the lifted (and centered + scaled) variables

dq

dt
= Aq+H(q⊗ q) + c, A ∈ Rn×n,H ∈ Rn×n2

, c ∈ Rn

• note that due to centering of the lifted data, we also have a constant term c in the model

Our goal is to construct a structure-preserving quadratic reduced model via OpInf that reduces the
dimension from n to r ≪ n,

dq̂

dt
= Âq̂+ Ĥ(q̂⊗ q̂) + ĉ, Â ∈ Rr×r, Ĥ ∈ R̂r×r2 , ĉ ∈ Rr,

by inferring the reduced operators Â, Ĥ, and ĉ from data.
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Steps to perform Operator Inference

3. Compute the POD basis

• we compute the proper orthogonal decomposition (POD) basis from the thin singular-value
decomposition (SVD) of Q

Q = VΣU⊤,

where
• V ∈ Rn×nt contains the left singular vectors
• Σ ∈ Rnt×nt is a diagonal matrix containing the singular values of Q in non-decreasing order

σ1 ≥ σ2 ≥ . . . ≥ σnt , where σj denotes the jth singular value
• U ∈ Rnt×nt contains the right singular vectors

• the first r ≪ n columns of V, i.e., the left singular vectors corresponding to the r largest singular
values form the POD basis Vr ∈ Rn×r

• r is typically determined via energy-based criteria, e.g., choose r such that∑r
j=1 σ

2
j∑nt

j=1 σ
2
j

≥ p,

where p = 95% or p = 99%
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Steps to perform Operator Inference

3. Compute the POD basis: remarks

• in problems with sparse training data sets, the size of the training data set limits the maximum
reduced dimension for a polynomial reduced model

• the computational complexity of the standard thin SVD is O(nn2
t ) (since n ≫ nt)

• alternatively, randomized SVD can be used instead, with complexity O(rnnt + r2(n+ nt)) for a
rank-r approximation; when r ≪ nt, n, the leading cost is O(rnnt)

• in settings in which either standard or randomized SVD are computationally infeasible, other
approaches, e.g., incremental SVD [Brand; European Conference on Computer Vision, 2002]
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Steps to perform Operator Inference

4. Project the transformed snapshots

• we project Q onto the linear subspace spanned by the column vectors of Vr:

Q̂ = V⊤
r Q ∈ Rr×nt

• note that the size of Q̂ is small since r ≪ n

• Q̂ will be used to form the data matrix in the OpInf learning problem
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Steps to perform Operator Inference

5. Infer the reduced operators

• to infer the reduced operators Â, Ĥ, ĉ of a quadratic reduced model, we must solve the following
regularized linear least-squares minimization problem

argminÂ,Ĥ,ĉ

∥∥∥∥∥∥Q̂⊤Â
⊤
+
(
Q̂⊗ Q̂

)⊤
Ĥ

⊤
+ 1ĉ−

(
dQ̂

dt

)⊤
∥∥∥∥∥∥
2

F

+ λℓ

(∥∥∥Â∥∥∥2
F
+ ∥ĉ∥2F

)
+ λq

∥∥∥Ĥ∥∥∥2
F

where
• F denotes the Frobenius norm
• λℓ, λq ∈ R are scalar regularization hyperparameters

Remarks

• in problems in which dQ
dt is available, we can compute dQ̂

dt = V⊤
r

dQ
dt

• otherwise, we must estimate dQ̂
dt using Q̂ via e.g., finite differences

• in problems with sparse and down-sampled training data sets, this estimation can be very
inaccurate and therefore lead to inaccurate ROMs
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∥∥∥∥∥∥Q̂⊤Â
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∥∥∥∥∥∥
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Steps to perform Operator Inference

5. Infer the reduced operators

In problems where an accurate estimation of the time derivative of the projected transformed snapshots
is difficult, we consider instead a fully discrete reduced model

q̂[k + 1] = Âq[k] + Ĥ(q̂[k]⊗ q̂[k]) + ĉ,

for which the reduced operators are inferred as

argminÂ,Ĥ,ĉ

∥∥∥∥Q̂⊤
1 Â

⊤
+
(
Q̂1 ⊗ Q̂1

)⊤
Ĥ

⊤
+ 1nt−1ĉ− Q̂⊤

2

∥∥∥∥2
F

+ λℓ

(∥∥∥Â∥∥∥2
F
+ ∥ĉ∥2F

)
+ λq

∥∥∥Ĥ∥∥∥2
F
,

where

Q̂1 =

 | | |
q̂1 q̂2 . . . q̂nt−1

| | |

 , Q̂2 =

 | | |
q̂2 q̂3 . . . q̂nt

| | |


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Steps to perform Operator Inference

5. Infer the reduced operators: finding the optimal regularization hyperparameters

• in “simple” settings, unregularized least-squares may suffice for finding the reduced operators of a
polynomial reduced model that is predictive beyond the training time horizon

• in practice, however, we have:

• sparse training data sets → overfitting
• errors due to model mispecification (e.g., lifting transformations leading to only an approximate

polynomial model)
• possible closure errors due to truncation of the POD modes
• numerical noise due to approximating the time derivative of the projected snapshots

• regularization is therefore key in practice to construct reduced models that can generalize beyond
the training horizon [McQuarrie, Huang, and Willcox; Journal of the Royal Society of New Zealand, 2021]

• to find λopt
ℓ , λopt

q , we perform a grid search over candidate hyperparameters and select the pair that
yields a reduced model with a reasonable behaviour over the desired time horizon

• we then infer the reduced operators Â, Ĥ, ĉ using λopt
ℓ , λopt

q in the regularized learning problem
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OpInf for nonlinear dynamical systems: summary

Learning a low-dimensional model using only snapshot data from the original high-fidelity model
(non-intrusive) but using variable transformations to expose and exploit model structure

1. generate full-state training trajectories (snapshots) from high-fidelity simulation
2. transform the training snapshots

2.1 lift the original snapshots to expose (approximate) the desired polynomial structure
2.2 center and scale transformed snapshot data

3. compute the POD basis from centered and scaled lifted trajectories
4. project transformed trajectories onto POD basis, to obtain trajectories in low-dimensional POD

coordinate space
5. infer the reduced operator of the low-dimensional polynomial model (OpInf)

5.1 find the optimal regularization hyperparameters
5.2 use the optimal hyperparameters to solve the OpInf linear least-squares minimization problem

convenience of black-box learning +
rigor of projection-based reduction +

structure imposed by physics
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Post-processing

• after the OpInf reduced solution is computed over the full time horizon (training and prediction),
we map the reduced solution back to the original coordinates

• we begin by computing
QOpInf = VrQ̂OpInf ∈ Rn×np ,

where np ∈ N denotes the total number of time iterations (training + prediction)

• we then unscale QOpInf as

Wcen,OpInf = unscale(QOpInf) ∈ Rn×np

• lastly, we add the reference solution to QOpInf to obtain

WOpInf = Wref +Wcen,OpInf ∈ Rn×np

• we can then compare the reduced model solutions with the high-fidelity solutions
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Operator Inference advantages and disadvantages

Advantages

• easy to implement and use (for both state predictions over time and parametric predictions)
• the ROM construction and usage is fully decoupled from the high-fidelity simulation code
• allows rapid prototyping
• it enables ROM development across multiple sites without the need to transfer large-scale data sets

from one site to another (e.g., training data generation, data manipulation, and POD basis
computation at ARFL, and OpInf ROM construction and postprocessing at UT Austin)

Disadvantages
• the presented regularized OpInf forrmulation is not guaranteed to preserve properties such as
energy conservation etc.

• the standard formulation is based on a linear POD basis, which inherits its challenges associated to
reactive flow/transport-dominated problems

• these challenges can be mitigated by enhancing OpInf with domain-decomposition, filtering, or by
using nonlinear manifolds instead of linear basis
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Summary: basics of learning dynamical systems from data

• OpInf is a scientific machine learning approach for learning non-intrusive data-driven reduced
models for systems with polynomial non-linearities

• OpInf blends the interpretability of physics-based modeling with the convenience of data-driven
methods to construct physics-based reduced models from data

• lifting transformations can be used to address more generic nonlinear models

• the choice of centering and scaling the training data has an impact on the overall OpInf
performance

• regularization is key to reduce overfitting, to account for model misspecification, truncation of
POD modes, etc.

• for problems with down-sampled training snapshots, we consider a fully discrete formulation for the
low-dimensional reduced model
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