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The goal of this workshop is two-fold:
a) Introduce data-driven and reduced order modeling, and

b) Present leading-edge research performed under the Air Force Center of Excellence
project (U.Michigan/UT-Austin/NYU/Purdue/Kansas) to AFRL and various DoD
stakeholders.

The first day will be about foundational linear algebra.
The second day will introduce basics of data-driven & reduced order modeling.

The third day will cover advanced topics.

Lecture notes will be provided for part of the material.
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Day 1 (Tuesday, Aug 29)

1:00 PM Welcome, Introductory remarks

1:30PM - 4:00PM Background in Numerical Linear algebra & Machine learning - Duraisamy (UM)
4:00PM — 4:30PM Discussion

Day 2 (Wednesday, Aug 30)

9:30 — 10:30AM Projection-based reduced order modeling - basics - Peherstorfer (NYU)

10:45AM — 12:00PM Linear Model Order Reduction - Rezaian (UM)

1:30 — 2:45PM Learning dynamical systems from data — basics — Farcas (UT)

3:00 — 4:30PM Adaptivity in Reduced Order models - Peherstorfer (NYU)

4:30 — 5:00 PM ROM Demo (1D test code: https://github.com/cwentlandO/perform) - Rezaian (UM)
Day 3 (Thursday, Aug 31)

9:30 — 10:45AM Robust & Scalable Reduced Order Models - Duraisamy (UM)

11:00AM — 12:15PM Non-intrusive Reduced Order Models: application to large-scale systems - Farcas (UT)

1:30 — 2:15 PM Adaptive Reduced Order models for chaotic multi-scale problems - Huang (KU)
2:30 - 3:30 PM Component-based ROMs (ROM Networks) - Huang (KU)
3:30 — 4:30 PM Discussion


https://github.com/cwentland0/perform

Resources

https://caslab.engin.umich.edu/teaching

1. PERFORM (Prototyping environment for reacting flow order reduction methods : code)

2. PERFORM (Prototyping environment for reacting flow order reduction methods : doc)


https://caslab.engin.umich.edu/teaching
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fcwentland0%2Fperform&sa=D&sntz=1&usg=AOvVaw2_mFfY61uyRmFa5kHMJ79z
https://www.google.com/url?q=https%3A%2F%2Fperform.readthedocs.io%2Fen%2Flatest%2F%23&sa=D&sntz=1&usg=AOvVaw1rxr2QJdw5t13DnJ1FKRZh

Motivation: What does it take to perform a “reasonably” high

pnsmsizy o fidelity simulation of a single rocket injector ?

Pressure, MPa 1.4 146152158164 1.7

Purdue Single element Rocket combustor :
50 milli-seconds of simulation time = 25 exaflop of computing resources

=1 month on 1000 core cluster

1 Merlin engine:
50 milli-seconds of simulation time = 2500 exaflop of computing resources

= 70 hours on fastest computer in the world*
=10 months on 10,000 core cluster

*$200k electricity cost / S4.4M compute cost (cloud)




M Landscape of Modeling
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MICHIGAN High Fidelity Models
Pro: Predictivity, Math/physical consistency
Con: Cost
Reduced Order Models: Reduced Fidelity Models:
Pro: Math/physical consistency Pro: Insight, efficiency

Con: Robustness & Generalization Con: Limited Generalization




Projection-based Reduced Order Models

Convection + diffusion + source

dqgﬁgp) = f(q(t,p)) ; q€R" HFM n~0(109)
WP _ f(q(tp) : o B ROMk~o0(0)
alt,p) = Va,(t,p) ; VeR™ () [ 7
T T n < q ~ v [qr] }k
Reduced Basis approximation Basis
N G . S

Basis V obtained from a knowledge of the solution

Goal is to ensure accuracy when k << n & efficiently evaluate f,



Some Model Order Reduction methods (More mature topics)

* Proper orthogonal decomposition (POD) (Lumley, 1967; Sirovich, 1981; Berkooz, 1991; Deane
et al. 1991; Holmes et al. 1996)
— use data to generate empirical eigenfunctions — time- and frequency-domain methods

* Krylov-subspace methods (Gallivan, Grimme, & van Dooren, 1994, Feldmann & Freund, 1995;
Grimme, 1997, Gugercin et al., 2008)
— rational interpolation

» Balanced truncation (Moore, 1981; Sorensen & Antoulas, 2002; Li & White, 2002)
— guaranteed stability and error bound for LTI systems
— close connection between POD and balanced truncation

* Reduced basis methods (Noor & Peters, 1980; Patera & Rozza, 2007)
— strong focus on error estimation for specific PDEs

* Eigensystem realization algorithm (ERA) (Juang & Pappa, 1985), Dynamic mode

decomposition (DMD) (Schmid, 2010), Loewner model reduction (Mayo & Antoulas, 2007)
— data-driven, non-intrusive



Reduced Order Models
Reduced order models have been used successfully in many fields =» Mostly in linear /
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viosie'll Mildly non-linear problems, elliptic problems, highly viscous problems

Courtesy:
Akselos




M Reduced Order Models
Reduced order models have been used successfully in many fields =» Mostly in linear /

viosi'"ll  mildly non-linear problems, elliptic problems, highly viscous problems

Zoom-in of the
global model




Model Order
Reduction

Volume 1: System- and Data-Driven Methods and
Algorithms

Edited by
Peter Benner, Stefano Grivet-Talocia, Alfio Quarteroni,
Gianluigi Rozza, Wil Schilders, and Luis Miguel Silveira

12



UNIVERSITY OF
MICHIGAN

Some Notable advances in ROMs of ‘Complex’ Fluid flows

ROMs based on POD, Balanced POD, etc. (Rowley, Willcox, etc.. Mid 2000s)

Empirical Interpolation, Discrete Empirical Interpolation (Maday, Sorenson, etc.. Mid-late 2000s)
Closures, Stabilization (Cordier, lllescu, Tezaur, Duraisamy, etc.. Mid 2000s — late 2010s)

Least Squares Petrov Galerkin, GNAT (Farhat, Carlberg, etc.. Late 2000s to mid 2010s)

Local bases, Feature tracking (Zahr etc.. Mid 2010s)

Adaptive bases (Perherstorfer, etc... late 2010s, Zahr, Huang, etc.)

Non-intrusive ROMs (Willcox, Hesthaven, etc.. Late 2010s)



Motivation :

Predictive ROMs for Extremely stiff/Non-linear Transport

MICHIGAN

probtems

FOM of One Injector Full Scale Engine

Oxidizerg,q| Heat Reaction

Introduction

10M cells, 1,000 processors, ~1 month >>100M cells, 10,000 processors, > 12 months
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Introduction

Multi-scale, Multi-physics, Complexity : An Example

Non-linear, Multi-scale multi-physics
interactions : acoustics, flow &

reaction o
Flow — Large coherent structures + ou,
small shear layer dynamics 0= oh® = p | ki
Reaction — Highly intensive, oY,
distributed & intermittent thin flame
High sensitivity to parameter
changes

-l

Pressure, Pa 156406 1.54E406 1.58E406 1.62E+06 1.66E+406 1.7E+06
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Highly nonlinear and stiff source term :
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State variables q
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- POD
- Autoencoders

Reduced Variables |

- Galerkin
- Petrov Galerkin

Intrusive q, € RF
Reduced Order Model F(q’l"; @7 \Ij) — O '



State variables q

UNIVERSITY OF
MICHIGAN

- POD
- Autoencoders

Reduced Variables

I - Linear
Data - Quadratic

- Neural

Non-intrusive

Reduced Order Model N(qr, 0) =0
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* Future-state predictions of Qols

}
Testi
1 esting : FOM

Temperature, K 300 490 680 870 1060 1250 1440 1630 1820 2010 2200

Pressure, kPa

I

0250026 0027 0026 0020 003 15 sec to simulate 1ms (< 10% error)
Time, s
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I I True predictivity with Adaptive basis & sampling

MICHIGAN Local Pressure Time Trace

* Dimension: 5 e Offiine waining Fow

* Sampling points update frequency: 20 ) .

e Components sampled: 0.5% %1200

»0.01ms offline training — 2ms prediction g ool

o
1000 A
remperature, K 3m e 0.0075 0.002 T(g.rg&z’ss 0.003 0.0035

' ~t
“ Sampling Points Adaptation




M Adaptive ROMs enable transient & parametric predictions
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Ueagul ¢ Dimension: 5

e Sampling points update frequency: 20
e Components sampled: 0.5%

» 0.01ms offline training with 100% m,, © % m__reduced by 50%
— 2ms prediction with m,, reduced to 50%

v Local Pressure Time Trace
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Resources

https://caslab.engin.umich.edu/teaching

* Isaac Newton Institute tutorial on Model Order reduction for complex systems (Jan 2023)

1. Model Order Reduction theory manual
http://websites.umich.edu/~caslab/docs/Newton/MOR Theory.pdf

2. PERFORM (Prototyping environment for reacting flow order reduction methods : code)

3. PERFORM (Prototyping environment for reacting flow order reduction methods : doc)

4. Slides (coming soon)

Also: https://afcoe.engin.umich.edu/publications 21


https://caslab.engin.umich.edu/teaching
http://www.google.com/url?q=http%3A%2F%2Fwebsites.umich.edu%2F~caslab%2Fdocs%2FNewton%2FMOR_Theory.pdf&sa=D&sntz=1&usg=AOvVaw0oJA2ZmLBn3ZdnAfz0YDV0
http://websites.umich.edu/~caslab/docs/Newton/MOR_Theory.pdf
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fcwentland0%2Fperform&sa=D&sntz=1&usg=AOvVaw2_mFfY61uyRmFa5kHMJ79z
https://www.google.com/url?q=https%3A%2F%2Fperform.readthedocs.io%2Fen%2Flatest%2F%23&sa=D&sntz=1&usg=AOvVaw1rxr2QJdw5t13DnJ1FKRZh

M Benchmarking & Broader Engagement
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m Workshop to tackle ROMs for a hierarchy of challenging
(yet manageable) multi-species/reacting flows

m 2D model combustor dataset publicly available
https://romworkshop.engin.umich.edu/

m Companion code: PERFORM (Prototyping EnviRonment
FOr Reduced Modeling)

m Open-source Python 1D reacting flow finite volume solver /
ROMs

m Framework designed to easily implement and test new ROM
methods on simplified reacting flow problems

https://github.com/cwentland0/perform




Quick Start

Example Cases

Inputs

Outputs

Input Parameter Index
Miscellanea

Issues and Contributing

Governing Equations
Flux Schemes
Gradient Limiters
Boundary Conditions
Time Integrators
Gas Models

Reaction Models

Reduced-order Modeling
ROM Input Files

Linear Subspace Projection ROMs

Galerkin Projection
LSPG Projection
SP-LSVT Projection

@ » Linear Subspace Projection ROMs ©) Edit on GitHub

Linear Subspace Projection ROMs

We begin describing linear projection ROMs by defining a general non-linear ODE which governs
our dynamical system, given by

dq
2R

g (q)

where for ODEs describing conservation laws, q € RY is the conservative state, and the non-
linear right-hand side (RHS) term R(q) is the spatial discretization of fluxes, source terms, and
body forces. For linear subspace ROMs, we make an approximate representation of the system
state via a linear combination of basis vectors,

K
a~§=q+P) viii=q+PVq
=1

The basis V € RV*K is referred to as the “trial basis”, and the vector qe RX are the generalized
coordinates. The matrix P is simply a constant diagonal matrix which scales the model prediction.

K, sometimes referred to as the “latent dimension”, is chosen such that K < N. By far the most

popular means of computing the trial basis is the proper orthogonal decomposition method.

Inserting this approximation into the FOM ODE, projecting the governing equations via the “test”
basis W € RY*K and rearranging terms arrives at

@_ Tx71 iy To-11 (=
dt—[WV] wp R(q)

Thic ic now a K -dimencinnal ONF which mav he sunlved with anv decired time inteoratinn echeme




M Established test suites for ROM (Release 1.0)
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e\l 1D convection-dominated problems with sharp gradients and multi-scale physics
¢ [solated challenges observed in turbulent flows with reaction
¢ Challenging but easily accessible problems to attract more participants

300 740 1180 1620 2060 2500

Turbulent Reacting Flow N
_) ’ v.!

Flame-turbulence Interactions

Flame-acoustics Interactions
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https://romworkshop.engin.umich.edu/test-cases



https://romworkshop.engin.umich.edu/test-cases

