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Linear mixed-effects modeling in SPSS

Introduction

The linear mixed-effects model (MIXED) procedure in SPSS enables you to fit linear mixed-
effects models to data sampled from normal distributions. Recent texts, such as those by
McCulloch and Searle (2000) and Verbeke and Molenberghs (2000), comprehensively
reviewed mixed-effects models. The MIXED procedure fits models more general than those
of the general linear model (GLM) procedure and it encompasses all models in the variance
components (VARCOMP) procedure. This report illustrates the types of models that MIXED
handles. We begin with an explanation of simple models that can be fitted using GLM and
VARCOMP, to show how they are translated into MIXED. We then proceed to fit models that
are unique to MIXED.

The major capabilities that differentiate MIXED from GLM are that MIXED handles correlat-
ed data and unequal variances. Correlated data are very common in such situations as repeat-
ed measurements of survey respondents or experimental subjects. MIXED also handles more
complex situations in which experimental units are nested in a hierarchy. MIXED can, for
example, process data obtained from a sample of students selected from a sample of schools
in a district.

In a linear mixed-effects model, responses from a subject are thought to be the sum (linear)
of so-called fixed and random effects. If an effect, such as a medical treatment, affects the
population mean, it is fixed. If an effect is associated with a sampling procedure (e.g., subject
effect), it is random. In a mixed-effects model, random effects contribute only to the covariance
structure of the data. The presence of random effects, however, often introduces correlations
between cases as well. Though the fixed effect is the primary interest in most studies or
experiments, it is necessary to adjust for the covariance structure of the data. The adjustment
made in procedures like GLM-Univariate is often not appropriate because it assumes the
independence of the data.

The MIXED procedure solves these problems by providing the tools necessary to estimate
fixed and random effects in one model. MIXED is based, furthermore, on maximum likelihood
(ML) and restricted maximum likelihood (REML) methods, versus the analysis of variance
(ANOVA) methods in GLM. ANOVA methods produce only an optimum estimator (minimum
variance) for balanced designs, whereas ML and REML yield asymptotically efficient estimators
for balanced and unbalanced designs. ML and REML thus present a clear advantage over
ANOVA methods in modeling real data, since data are often unbalanced. The asymptotic
normality of ML and REML estimators, furthermore, conveniently allows us to make inferences
on the covariance parameters of the model, which is difficult to do in GLM.

Data preparation for MIXED

Many datasets store repeated observations on a sample of subjects in “one subject per row”
format. MIXED, however, expects that observations from a subject are encoded in separate
rows. To illustrate, we select a subset of cases from the data that appear in Potthoff and Roy
(1964). The data shown in Figure 1 on the next page encode, in one row, three repeated
measurements of a dependent variable (“dist1” to “dist3”) from a subject observed at different
ages (“agel” to “age3”).
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MIXED, however, requires that measurements at different ages be collapsed into one variable,
so that each subject has three cases. The Data Restructure Wizard in SPSS simplifies the
tedious data conversion process. We choose “Data- >Restructure” from the pull-down menu
and select the option, “Restructure selected variables into cases.” We then click the “Next”
button to reach the following dialog box:

Restructure Data Wizard - Step 2 of 7 i x

Variables to Cases: Number of Variable Groups

“You have chosen to restructure selected variables into groups of related cases in the new file.

o & group of related variables, called a variable group, represents measurements on one variable.
For example, the variable may be width. If it is recorded in three separate measurements, each one
representing a different point in time-w1, w2, and w3, then the data are aranged in a group of variables.

If there is more than one variable in the file often it is also recorded in a variable group, for example height,
recorded in b1, h2, and h3

Howe many variable groups do you want to restructure?

" One (for example, wil, w2, and w3)

&' More than one (for example, wl, w2, w3 and 1, h2, b3, ete.}

< Back I=Esxt> I Finish | Cancel | Help |

Figure 2

We need to convert two groups of variables (“age” and “dist”) into cases. We therefore enter
“2" and click “Next.” This brings us to the “Select Variables” dialog box on the next page:
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Restructure Data Wizard - Step 3 of 7

Variables to Cases: Select Variables

Far each vaiiable gioup you have in the curent data the restructured fle will have one target variable.

I this step, choase how o identify case gioups in the restiuctured data, and choose which vaiables belong with
=ach target vanable.

Dptionally, you can alzo choose vaiiables to copy ta the new file as Fixed Variablas.

atiables in the Curent File: P
——————— [~ Case Group Identification
@ Subiect 1D [su5id] = :

8, Gendes [gender] |Use selecied varisble |

@ Agel inyears [agel] 4| vadable: [ SubjeotID Tsbid]

4 hge? in years [age2]
& hge?in years [ags3] ~Yariables to be Transposed

4 Distancel [mm) from <., Target Vansble: Im 'l
@ Diztance [mm) from c... ;I;I @ Distance? [

Distance3 f
@ o3 mm from o @Dislanoe2 [mnen] from center of pilusta..
;I @ Distarce3 [mm) from center of pituita.._

Eived
E‘< Gender [gender]

[ <Back | Hew> || s | | cancel | Help

Figure 3

In the “Select Variables” dialog box, we first specify “Subject ID [subid]” as the case group
identification. We then enter the names of new variables in the target variable drop-down
list. For the target variable “age,” we drag “agel,” “age2” and “age3” to the list box in the
“Variables to be Transposed” group. We similarly associate variables “dist1,” “dist2” and “dist3”
with the target variable “distance.” We then drag variables that do not vary within a subject to
the “Fixed Variable(s)” box. Clicking “Next” brings us to the “Create Index Variables” dialog
box. We accept the default of one index variable, then click “Next” to arrive at the final dialog box:

Restructure Data Wizard - Step 5 of 7

Vfariables to Cases: Create One Index Variable

“rou have chosen to create one indsx vaniable. The vaniable's values can be sequential rumbers or the names of
waniables in a group.

I the table you can specify the name and label for the index vasiable.

~what kind of index values?
' Sequential numbers
Index i alues: 1.2.3
" Variable names
|rdey Walues; Iage‘l, ageZ, aged LI

Edit the Index Wanable Name and Label:

| Hame |Labet |Levels |index values |
1 [ isit B3 |
<Back [ Hewt> Fsh | | Concd | Hep

Figure 4

In the “Create One Index Variable” dialog box, we enter “visit” as the name of the indexing
variable and click “Finish.” The data file is transformed into a format that MIXED can analyze.
We now have three cases for each subject, as shown in Figure 5 on the next page:
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We can also perform the conversion using the following syntax:

VARSTOCASES

/MAKE age FROM age1 age2 age3
/MAKE distance FROM dist1 dist2 dist3
/INDEX = visit(3)

/KEEP = subid gender.

The syntax is easy to interpret — it collapses the three age variables into “age” and the three
response variables into “distance.” At the same time, a new variable, “visit,” is created to index
the three new cases within each subject. The last subcommand means that all variables that
are constant within a subject should be kept.

Fitting fixed-effects models with iid residual errors

A fitted model has the form Y = XP + € where ¥ is a vector of responses, X is the fixed-
effects design matrix, P is a vector of fixed-effects parameters and € is a vector of residual
errors. In this model, we assume that € is distributed as N[O, R ], where R is an unknown
covariance matrix. A common belief is that R = ¢”I. We can use GLM or MIXED to fit a
model with this assumption. Using a subset of the growth study dataset, we illustrate how to
use MIXED to fit a fixed-effects model. The following syntax (Example 1) fits a fixed-effects
model that investigates the effect of the variables “gender” and “age” on “distance,” which is
a measure of the growth rate.

Technical report
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Example 1 — Fixed-effects model using MIXED
Syntax:

MIXED DISTANCE BY GENDER WITH AGE
/FIXED = GENDER AGE | SSTYPE(3)
/PRINT = SOLUTION TESTCOV.

Output:
Type 1l Tests of Fixed Effectd
Denominator
Source Numerator df df L Sig
Intercept 1 27 38.356 .000
GENDER 1 27 7.621 .010
AGE .
1 27 11.040 .003 Figure 6
2. Dependent Variable: Distance (mm) from center of pituitary to
pteryo-makxillary fissure.
Estimates of Fixed Effect®
95% Confidence
Interval
Lower Upper
Estimate | Std. Error | df 1 Sig Bound Bound
Intercept 17.050 2.620 27 6.507 | .000 11.673 | 22427
[GENDER=F] -1.933 700 27 | 2761 010 -3.370 -.496
[GENDER=M] 0007 .000 . . . . :
AGE 713 214 27 3323 | .003 273 1.152 Figure 7
2 This parameter is set to zero because it is redundant.
b. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary
fissure.
Estimates of Covariance Parameters’
| 95% Confidence Interval |
Parameter | Estimate | Std. Error | Wald 7 | Sig. | Lower Bound | Upper Bound
Residual 3.679 1.001 3.674 | .000 2158 6.271 Figure 8

a. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary
fissure.

The syntax in Example 1 produces a “Type III Tests of Fixed Effects” table (Figure 6). Both
“gender” and “age” are significant at the .05 level. This means that “gender” and “age” are
potentially important predictors of the dependent variable. More detailed information on
fixed-effects parameters may be obtained by using the subcommand /PRINT SOLUTION.
The “Estimates of Fixed Effects” table (Figure 7) gives estimates of individual parameters,
as well as their standard errors and confidence intervals. We can see that the mean distance
for males is larger than that for females. Distance, moreover, increases with age. MIXED
also produces an estimate of the residual error variance and its standard error. The /PRINT
TESTCOV option gives us the Wald statistic and the confidence interval for the residual error
variance estimate.

m@
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Example 1 is simple — users familiar with the GLM procedure can fit the same model using
GLM.

Example 2 — Fixed-effects model using GLM
Syntax:
GLM DISTANCE BY GENDER WITH AGE
/METHOD = SSTYPE(3)

/PRINT = PARAMETER
/DESIGN = GENDER AGE.

Output:
Tests of Between-Subjects Effects
Dependent Variable: Distance (mm| from center of pituitary to ptervo-maxillary fissure
Type Ill Sum
Source of Sguares df e E I
Corrected Model 68.6462 2 34323 9.331 .001
Intercept 141.095 1 141.095 38.356 .000
GENDER 28.033 1 28033 7.621 010
AGE 40613 1 40,613 11.040 .003
Error 99.321 27 3.679
Total 18372.000 30
Corrected Total 167.967 29 Figure 9
2. R Squared = .408 (Adjusted R Squared = .265)
Parameter Estimates
Dependent Variable: Distance {mm) from center of pituitary to pteryo-maxillary fissure
95% Confidence
Interval
Lower Upper
| Parameter B Std, Error t Sig. Bound Bound
Intercept 17.050 2620 | 6.507 .000 11.673 22.427
[GENDER=F] -1.933 700 | -2.761 .010 -3.370 -.496
[GENDER=M] 02 . . . . .
AGE 713 214 3.323 003 273 1.152 Figure 10

2 This parameter is set to zero because it is redundant.

We see in Figure 9 that GLM and MIXED produced the same Type III tests and parameter
estimates. Note, however, that in the “Parameter Estimates” table (Figure 10), there is no
column for the sum of squares. This is because, for some complex models, the test statistics

in MIXED may not be expressed as a ratio of two sums of squares. They are thus omitted
from the ANOVA table.

Fitting fixed-effects models with non-iid residual errors

The assumption R = o'l may be violated in some situations. This often happens when
repeated measurements are made on each subject. In the growth study dataset, for example,
the response variable of each subject is measured at various ages. We may suspect that error
terms within a subject are correlated. We may assume that R is a block diagonal matrix, where
each block is a first-order, autoregressive (AR1) covariance matrix.

®
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MIXED DISTANCE BY GENDER WITH AGE
/FIXED GENDER AGE
/REPEATED VISIT | SUBJECT(SUBID) COVTYPE(ART)
/PRINT SOLUTION TESTCOV R.

Example 3 — Fixed-effects model with correlated residual errors

Output:
Type lll Tests of Fixed Effect8
Denominator
Source Numerator df df E Sig
Intercept 1 25.723 75.036 .000
GENDER 1 8.701 3.702 .088
AGE 1 23.687 22772 .000

2. Dependent Variable: Distance (mm) from center of pituitary to
pteryo-maxillary fissure.

Estimates of Fixed Effectf

95% Confidence
Interval
Lower Upper
I i | Std. Error df t Sig Bound Bound
Intercept 17.243 1.947 | 26.760 8.857 | .000 13.246 | 21.239
[GENDER=F] -2.072 1.077 | 8701 | -1.924 | .088 -4.522 37T
[GENDER=M] .000® .000 . . . . .
AGE 712 149 | 23.687 | 4.772 | .000 404 1.021
2 This parameter is set to zero because it is redundant.
b. Dependent Variable: Distance (mm) from center of pituitary to pteryo-maxillary
fissure.
Estimates of Covariance Parameterg
959% Confi Interval
Repeated  AR1 : ” = -
Measures  diagonal 3.809 1.467 2.597 .009 1.791 8101
AR1 rho 729 120 £.072 .000 .401 .892

a Dependent Variable: Distance (mm} from center of pituitary to pteryo-maxillary fissure.

Figure 11

Figure 12

Figure 13
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Residual Covariance (R) Matri®

IVISIT =11 [IVISIT =21 | TVISIT = 3]
[VISIT = 1] 3.809 2778 2.026
[VISIT =2] 2778 3.809 2778
[VISIT = 3] 2.026 2778 3.809 Figure 14

First-Order Autorearessive

a Dependent Variable: Distance (mm) from
center of pituitary to pteryo-maxillary fissure.

Example 3 uses the /REPEATED subcommand to specify a more general covariance structure
for the residual errors. Since there are three observations per subject, we assume that the set of
three residual errors for each subject is a sample from a three-dimensional, normal distribution,
with a first-order, autoregressive (AR1) covariance matrix. Residual errors within each subject
are therefore correlated, but are independent across subjects. The MIXED procedure, by default,
uses the restricted maximum likelihood (REML) method to estimate the covariance matrix.
An option is to request maximum likelihood (ML) estimates.

The syntax in Example 3 also produces the “Residual Covariance (R) Matrix” (Figure 14),
which shows the estimated covariance matrix of the residual error for one subject. We see
from the “Estimates of Covariance Parameters” table (Figure 13) that the correlation parameter
has a relatively large value (.729) and that the p-value of the Wald test is less than .05. The
autoregressive structure may thus fit the data better than the model in Example 1.

We also see that, for the tests of fixed effects, the denominator degrees of freedoms are not
integers. This is because these statistics do not have exact F distributions. The denominator
degrees of freedoms are obtained by a Satterthwaite approximation. We see in the new model
that gender is not significant at the .05 level. This demonstrates that ignoring the possible
correlations in your data may lead to incorrect conclusions. MIXED is therefore usually a
better alternative to GLM and VARCOMP when you suspect correlation in the data.

Fitting simple mixed-effects models (balanced design)

MIXED, as its name implies, handles complicated models that involve fixed and random effects.
Levels of an effect are, in some situations, only a sample of all possible levels. If we want to
study the efficiency of workers in different environments, for example, we don’t need to include
all workers in the study — a sample of workers is usually enough. The worker effect should
be considered random, due to the sampling process. A mixed-effects model has, in general,
the forn y = XP + Zy+ € where the extra term Z7y models the random effects. Z is the
design matrix of random effects and Y is a vector of random-effects parameters. We can use
GLM and MIXED to fit mixed-effects models. MIXED, however, fits a much wider class of
models. To understand the functionality of MIXED, we first look at several simpler models
that can be created in MIXED and GLM. We also look at the similarity between MIXED and
VARCOMP in these models.

Technical report
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In examples 4 through 6, we use a semiconductor dataset that appeared in Pinheiro and Bates

(2000) to illustrate the similarity between GLM, MIXED and VARCOMP. The dependent variable
in this dataset is “current” and the predictor is “voltage.” The data are collected from a sample
of ten silicon wafers. There are eight sites on each wafer and five measurements are taken at
each site. We have, therefore, a total of 400 observations and a balanced design.

Example 4 — Simple mixed-effects model with balanced design using MIXED

Syntax:

MIXED CURRENT BY WAFER WITH VOLTAGE
/FIXED VOLTAGE | SSTYPE(3)

/RANDOM WAFER
/PRINT SOLUTION TESTCOV.
Output:
Type lll Tests of Fixed Effectd
Denominator
Numerator df df E Sig

Intercept 1 16.531 | 3774.499 .000
VOLTAGE 1 389.000 |67958.177 .000

2. Dependent Variable: CURRENT.

Estimates of Fixed Effectg
| 95% Confidence |nterval
j | Sid Error df i ] | Lower Bound | Upper Bound
Intercept -7.08287 | 1152868 16.531 -61.437 000 -7.3266279 -6.8391076
VOLTAGE 96486505 | 0370123 389.000 260.688 000 9.5758903 9.7214287

3 Dependent Variable: CURRENT.

Estimates of Covariance Parameterd

95% Confidence
Interval
Std. Lower | Upper
i Ermor | WaldZ | Sig Bound | Bound
Residual 175 013 | 13946 | .000 152 202
WAFER 1D diagonal .093 046 2.026 | .043 .036 .246

2. Dependent Variable: CURRENT.

Figure 15

Figure 16

Figure 17
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Example 5 — Simple mixed-effects model with balanced design using GLM

Syntax:

GLM CURRENT BY WAFER WITH VOLTAGE
/RANDOM = WAFER

/METHOD = SSTYPE(3)

/PRINT = PARAMETER

/DESIGN = WAFER VOLTAGE.

Output:

Tests of Between-Subjects Effects

_Dependent Variable: CURRENT

Type Il Sum Mean
Source of Sguares df Sguare E Sig
Intercept  Hypothesis 2229 645 1| 2229.645 | 3774.499 |.000
Error 9.782 | 16.559 5912
WAFER Hypothesis 35223 ] 3.914 22319 |.000
Error 68.211 389 758
VOLTAGE Hypothesis 11916.369 1 | 11916.369 | 67958.177 |.000
Error 68.211 389 1758 Figure 18
2 111 MS(WAFER) + .889 MS(Error)
b. mMs(Error)
Expected Mean Squares?
Variance Component
Quadratic
Source Var(WAFER)Y | Var{Frron) Temm
Intercept 4.444 1.000 | Intercept
WAFER 40.000 1.000
VOLTAGE .000 1.000 | VOLTAGE
Error 000 1.000

Figure 19
@ For each source, the expected mean square

equals the sum of the coefficients in the cells

times the variance components, plus a quadratic

term involving effects in the Quadratic Term cell.

b. Expected Mean Squares are based on the Type lll
Sums of Squares.

Technical report 12
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Example 6 — Variance components model with balanced design
Syntax:

VARCOMP CURRENT BY WAFER WITH VOLTAGE
/RANDOM = WAFER
/METHOD = REML.

Output:
Variance Estimates
| Component i
Var(WAFER) 093
Var({Error) A75
Figure 20

Dependent Variable: CURRENT
Method: Restricted Maximum Likelihood Estimation

In Example 4, “voltage” is entered as a fixed effect and “wafer” is entered as a random effect.
This example tries to model the relationship between “current” and “voltage” using a straight
line, but the intercept of the regression line will vary from wafer to wafer according to a normal
distribution. In the Type III tests for “voltage,” we see a significant relationship between
“current” and “voltage.” If we delve deeper into the parameter estimates table, the regression
coefficient of “voltage” is 9.65. This indicates a positive relationship between “current” and
“voltage.” In the “Estimates of Covariance Parameters” table (Figure 17), we have estimates
for the residual error variance and the variance due to the sampling of wafers.

We repeat the same model in Example 5 using GLM. Note that MIXED produces Type II1
tests for fixed effects only, but GLM includes fixed and random effects. GLM treats all effects
as fixed during computation and constructs F statistics by taking the ratio of the appropriate
sums of squares. Mean squares of random effects in GLM are estimates of functions of the
variance parameters of random and residual effects. These functions can be recovered from
“Expected Mean Squares” (Figure 19). In MIXED, the outputs are much simpler because the
variance parameters are estimated directly using maximum likelihood (ML) or restricted
maximum likelihood (REML). As a result, there is no random-effect sum of squares.

When we have a balanced design, as in examples 4 through 6, the tests of fixed effects are the
same for GLM and MIXED. We can also recover the variance parameter estimates of MIXED
by using the sum of squares in GLM. In MIXED, for example, the estimate of the residual variance
is 0.175, which is the same as the MS(Error) in GLM. The variance estimate of random effect
“wafer” is 0.093, which can be recovered in GLM using the “Expected Mean Squares” table
(Figure 19) in Example 5:

Var(WAFER) = [MS(WAFER)-MS(Error)J/40 = 0.093

This is equal to MIXED’s estimate. One drawback of GLM, however, is that you cannot compute
the standard error of the variance estimates.

®
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VARCOMP is, in fact, a subset of MIXED. These two procedures, therefore, always provide the
same variance estimates, as seen in examples 4 and 6. VARCOMP only fits relatively simple
models. It can only handle random effects that are iid normal. No statistics on fixed effects
are produced. If, therefore, your primary objective is to make inferences about fixed effects
and your data are correlated, MIXED is a better choice.

An important note: due to the different estimation methods that are used, GLM and MIXED
do not produce the same results. The next section gives an example of such differences.

Fitting simple mixed-effects models (unbalanced design)

One situation about which MIXED and GLM disagree is an unbalanced design. To illustrate
this, we removed some cases in the semiconductor dataset, so that the design is no longer
balanced.

water_unbalanc Data Editar

S8 B| 0| L] =] al

Jdabbll oL

5

Figure 21

We then rerun examples 4 through 6 with this unbalanced dataset. The output is shown in
examples 4a through 6a. We want to see whether the three methods — GLM, MIXED and
VARCOMP — still agree with each other.

Technical report
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Example 4a — Mixed-effects model with unbalanced design using MIXED

MIXED CURRENT BY WAFER WITH VOLTAGE
/FIXED VOLTAGE | SSTYPE(3)

/RANDOM WAFER
/PRINT SOLUTION TESTCOV.

Output:
Type lll Tests of Fixed Effects
Denominator
Source Numerator df df E Sig
Intercept 1 16.467 | 3709.960 .000
VOLTAGE 1 385034 |67481.118 .000 Figure 22

2. Dependent Variable: CURRENT.

Estimates of Fixed Effects
55% Confidence Interval
| Parameter | Estimate | Std Error df 1 Sia Lower Bound |

Intercept -7.098 17 16.467 -50.909 000 -7.345 -6.852

VOLTAGE 9,656 037 | 385034 | 259.771 000 9.583 9.730 Figure 23
3 Dependent Variable: CURRENT.
! ' Estimates of Covariance Parameters$
95% Confidence
Interval
Std. Lower | Upper

Estimate | Error | Wald 2 | Sig Bound | Bound
1744505 | 013 | 13.874 | .000 151 201

2027 | 043 038 252 .
Figure 24

Residual
WAFER ID diagonal | 0957247 | .047

@ Dependent Variable: CURRENT.

Technical report 15
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Example 5a — Mixed-effects model with unbalanced design using GLM
Syntax:

GLM CURRENT BY WAFER WITH VOLTAGE
/RANDOM = WAFER

/METHOD = SSTYPE(3)
/PRINT = PARAMETER /DESIGN = WAFER VOLTAGE.

Output:

Tests of Between-Subjects Effects

_Dependent Variable: CURRENT
Type Il Sum Mean
| Source of Squares df Sauare E Sia,
Intercept  Hypothesis 2193.281 1 2193281 | 3724.816 | .000
Error 9.746 | 16.551 58882932
WAFER Hypothesis 35.495 9 3.944 22607 | .000
Error 67.163 385 .1744494°
WOLTAGE Hypothesis 11772.307 1 11772307 | 67482629 | .000
b
Error 67.163 385 1744494 Figure 25
2. 110 MS(WAFER) + .890 MS{Error)
B Ms(Error)
Expected Mean Squarest?
Variance Component |
Quadratic
Source Var(WAFERY | Var(Error) Term
Intercept 4.352 1.000 | Intercept
WAFER 39.591 1.000
VOLTAGE .000 1.000 | VOLTAGE
Error .000 1.000 Figure 26

8. For each source, the expected mean square
equals the sum of the coefficients in the cells
times the variance components, plus a quadratic
term involving effects in the Quadratic Term cell.

b. Expected Mean Squares are based on the Type Il
Sums of Squares.
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Example 6a — Variance components model with unbalanced design
Syntax:

VARCOMP CURRENT BY WAFER WITH VOLTAGE
/RANDOM = WAFER
/METHOD = REML.

Output:

Variance Estimates

| Component | Estimate |
Var(WAFER) | .0957247
Var(Error) 1744505

Figure 27

Dependent Variable: CURRENT
Method: Restricted Maximum Likelihood Estimation

Since the data have changed, we expect examples 4a through 6a to differ from examples 4
through 6. We will focus instead on whether examples 4a, ba and 6a agree with each other.

In Example 4a, the F statistic for the “voltage” effect is 67481.118, but Example 5a gives an
F statistic value of 67482.629. Apart from the test of fixed effects, we also see a difference in
covariance parameter estimates.

Examples 4a and 6a, however, show that VARCOMP and MIXED can produce the same variance
estimates, even in an unbalanced design. This is because MIXED and VARCOMP use maximum
likelihood or restricted maximum likelihood methods in estimation, while GLM estimates are
based on the method-of-moments approach.

MIXED is generally preferred because it is asymptotically efficient (minimum variance),
whether or not the data are balanced. GLM, however, only achieves its optimum behavior
when the data are balanced.

Fitting mixed-effects models with subjects

In the semiconductor dataset, “current” is a dependent variable measured on a batch of
wafers. These wafers are therefore considered subjects in a study. An effect of interest (such
as “site”) may often vary with subjects (“wafer”). One scenario is that the (population) means
of “current” at separate sites are different. When we look at the current measured at these
sites on individual wafers, however, they hover below or above the population mean according
to some normal distribution. It is therefore common to enter an “effect by subject” interaction
term in a GLM or MIXED model to account for the subject variations.

In the dataset there are eight sites and ten wafers. The site*wafer effect, therefore, has 80
parameters, which can be denoted by 7V, i=1...10 and j=1...8. A common assumption is that
Yii’s are assumed to be iid normal with zero mean and an unknown variance. The mean is
zero because Yi’s are used to model only the population variation. The mean of the popula-
tion is modeled by entering “site” as a fixed effect in GLM and MIXED. The results of this
model for MIXED and GLM are shown in examples 7 and 8.
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Example 7 — Fitting random effect*subject interaction using MIXED
Syntax:

MIXED CURRENT BY WAFER SITE WITH VOLTAGE
/FIXED SITE VOLTAGE |SSTYPE(3)
/RANDOM SITE*WAFER | COVTYPE(ID).

Output:
Type lll Tests of Fixed Effectd
Denominator
| Numerator df df E Sig
Intercept 1 264 928 [10467.974 .000
SITE T 68.691 1.140 .349
VOLTAGE 1 319.000 |76639.444 .000 Figure 28
3. Dependent Variable: CURRENT.
Eeti of Co b o
95% Confidence
Interval
Std. Lower | Upper
| Parameter Estimate | Sror | WaldZ | Sig | Sound | Bound | Fi 2
Residual 155 | 012 | 12629 | 000 | 133 | .82 igure 29
SITE *WAFER  ID diagonal 104 | o023 | 4586 | oo 068 | 159

a Dependent Variable: CURRENT.

Example 8 — Fitting random effect*subject interaction using GLM
Syntax:

GLM CURRENT BY WAFER SITE WITH VOLTAGE

/RANDOM = WAFER

/METHOD = SSTYPE(3)
/DESIGN = SITE SITE*WAFER VOLTAGE.

Output:

Tests of Between-Subjects Effects

Dependent Variable: CURRENT
Type lll Sum
| Source of Sguares df MeanSauare | F | Sig |
Intercept  Hypothesis. 7220.645 1 2220645 |10467 974 000
Errar 70,248 320798 213
SITE Hypothesis 5371 T TET 1.140 248
Errar 48,452 72 673
WAFER *  Hypothesis 48 462 72 873 4329 000
SITE Error 42,600 319 1855°
WOLTAGE  Hypothesis 11916.369 1 11916.368 | 76630 444 000
Errar 458,600 319 _155° Figure 30
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Expected Mean Squares®P

Variance Component |
Var(WAFER * Quadratic
|Sn?urce SITE) Var(Error) Term
ercept Intercept,
556 1.000 SITE
SITE 5.000 1.000 | SITE
WAFER * SITE 5.000 1.000
VOLTAGE .000 1.000 | VOLTAGE
Error .000 1.000 Figure 31

8. For each source, the expected mean square
equals the sum of the coefficients in the cells
times the variance components, plus a quadratic
term involving effects in the Quadratic Term cell.

b. Expected Mean Squares are based on the Type lll
Sums of Squares.

Since the design is balanced, the results of GLM and MIXED in examples 7 and 8 match. This
is similar to examples 4 and 5. We see from the results of Type III tests that “voltage” is still
an important predictor of “current,” while “site” is not. The mean currents at different sites
are thus not significantly different from each other, so we can use a simpler model without
the fixed effect “site.” We should still, however, consider a random-effects model, because
ignoring the subject variations may lead to incorrect standard error estimates of fixed effects
or false significant tests.

Up to this point, we examined primarily the similarities between GLM and MIXED. MIXED,
in fact, has a much more flexible way of modeling random effects. Using the SUBJECT and
COVTYPE options, Example 9 presents an equivalent form of Example 7.

Example 9 — Fitting random effect*subject interaction using SUBJECT specification
Syntax:

MIXED CURRENT BY SITE WITH VOLTAGE
/FIXED SITE VOLTAGE |SSTYPE(3)
/RANDOM SITE | SUBJECT(WAFER) COVTYPE(ID).

The SUBJECT option tells MIXED that each subject will have its own set of random parameters
for the random effect “site.” The COVIYPE option will specify the form of the variance covari-
ance matrix of the random parameters within one subject. The syntax attempts to specify the
distributional assumption in a multivariate form, which can be written as:

& 0 - 0
0

( |
R
Lo 0 - GZJ_

)

Yo

(1)

: are idd N

|
)

ceey

——
=
oo
—

Figure 32
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This assumption is equivalent to that in Example 7 under normality.

One advantage of the multivariate form is that you can easily specify other covariance structures
by using the COVIYPE option. The flexibility in specifying covariance structures helps us to
fit a model that better describes the data. If, for example, we believe that the variances of
different sites are different, we can specify a diagonal matrix as covariance type and the

assumption becomes:
- [(0\(a? © 0)
(71,1 ) (72,1 ) (710,1 ) r ! 2 ]
: : . , 0[l0 of - 0]
I A | areidd Nij. . o . .|
L‘Y],SJL’Y’Z,SJ LY](J,SJ ’ L ) ) ) J
\0J{o o - o, ] Figure 33

The result of fitting the same model using this assumption is given in Example 10.

Example 10 — Using COVTYPE in a random-effects model
Syntax:

MIXED CURRENT BY SITE WITH VOLTAGE

/FIXED SITE VOLTAGE |SSTYPE(3)

/RANDOM SITE | SUBJECT(WAFER) COVTYPE(VC)
/PRINT G TESTCOV.

Output:
Type lll Tests of Fixed Effect8
Denominator
Source Numerator df df = Sia
Intercept 1 252.867 [10467.974 .000
SITE 7 16.071 1.267 326
VOLTAGE 1 319.000 |76639.444 .000 Figure 34
@ Dependent Variable: CURRENT.
Estimates of Covariance Parameters
95% Confidence
Intepval
Std. Lower Upper
= Estimate | Error | Wald Z Sig Bound Bound
Residual 55 | 012 12.629 | .000 133 182
SITE VC diagonal 1 136 | 079 1.726 | .084 .044 424
[subject= " v(C diagonal 2 096 | .080 1.599 | .110 .028 326
WAFER]  vc diagonal 3 183 | 101 | 1812 | o070 | 062 539
VC diagonal 4 119 | 071 1.681 | .093 037 382
VC diagonal 5 071 | .048 1.475 | .140 .019 .269
VC diagonal 6 073 | .048 1.484 | 138 018 272
VC diagonal 7 .030 | .029 1.046 | .296 005 .198
VC diagonal 8 120 | 071 1.685 | .092 038 385 Figure 35

2 Dependent Variable: CURRENT.
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SITE [subject = WAFER}

[SITE=1] | [SITE=2] | [SITE=3] | [SITE=4] | [SITE=5] | [SITE=6] | [SITE=7] | [SITE=8]
| WAFER | [WAFER | |WAFER | | WAFER | |WWAFER || WAFER | | WAFER | | WAFER
000 .

[STTE=1]| WAFER 136 .000 000 000 .000 000 000
[SITE=2]| WAFER 000 096 000 000 .000 .000 .000 .000
[SITE=3] | WAFER 000 000 183 000 .000 000 000 000
[SITE=4] | WAFER 000 000 000 119 .000 000 000 000
[SITE=5] | WAFER 000 000 000 000 071 000 000 000
[SITE=6] | WAFER .000 .000 .000 .000 .000 073 000 000
[SITE=7] | WAFER 000 000 000 000 .000 000 030 000
[SITE=8] | WAFER 000 .000 000 000 .000 000 000 120

Variance Components

Figure 36
3- Dependent Variable: CURRENT. gur

In Example 10, we request one extra table, the estimated covariance matrix of the random
effect “site.” It is an eight-by-eight diagonal matrix in this case. Note that changing the covariance
structure of a random effect also changes the estimates and tests of a fixed effect. We want, in
practice, an objective method to select a suitable covariance structure for our random effects.
In the section “Covariance Structure Selection,” we revisit examples 9 and 10 to show how to
select covariance structure for random effects.

Multilevel analysis

The use of the SUBJECT and COVTYPE options in /RANDOM and /REPEATED brings many
options for modeling the covariance structures of random effects and residual errors. It is
particularly useful when modeling data obtained from a hierarchy. Example 11 illustrates

the simultaneous use of these options in a multilevel model. We selected data from six schools
from the Junior School Project of Mortimore et al. (1988). We investigate below how the
socioeconomic status (SES) of a student affects his or her math scores over a three-year period.

Example 11 — Multilevel mixed-effects model
Syntax:

MIXED MATHTEST BY SCHOOL CLASS STUDENT GENDER SES SCHLYEAR
/FIXED GENDER SES SCHLYEAR SCHOOL

/RANDOM SES |SUBJECT(SCHOOL*CLASS) COVTYPE(ID)

/RANDOM SES |SUBJECT(SCHOOL*CLASS*STUDENT) COVTYPE(ID)
/REPEATED SCHLYEAR | SUBJECT(SCHOOL*CLASS*STUDENT) COVTYPE(AR1)
/PRINT SOLUTION TESTCOV.

Output:
Type lll Tests of Fixed Effectd
Denominator

Source Numerator df df E Sia.

Intercept 1 15.100 | 1076.489 .000

GENDER 1 96.609 979 325

SES 2 16.513 3.888 041
SCHLYEAR 2 201.195 55.376 .000

SCHOOL 5 12 969 872 526 | ..

Figure 37

4. Dependent Variable: Math test.
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Estimates of Fixed Effect®

95% Confidence Interval
| Parameter | Estimate | Std Error df t Sig Lower Bound | Upper Bound |

Intercept 29.097 2184 19.564 13.324 .000 24535 33.659

[GEMDER=0] -1.026 1.037 96.609 -.989 325 -3.084 1.032

[GEMDER=1] .0o0* 000 . . . . .

[SES=1.00] 5.803 2331 20.899 2.490 021 955 10.852

[SES=2.00] .304 1.782 13.705 70 867 -3.527 4134

[SES=3.00] .ooo® 000 . . . . .

[SCHLYEAR=0] -4.377 457 116.837 -9.575 .000 -5.282 -3.471

[SCHLYEAR=1] -4.126 468 218.911 -8.825 .000 -5.047 -3.204

[SCHLYEAR=2] .0o0® 000 . . . . .

[SCHOOL=1] -2.751 2405 12727 -1.144 274 -7.958 2.456

[SCHOOL=2] - 784 2865 18.151 =274 787 -5.801 5.232

[SCHOOCL=3] 2269 2645 14.332 858 405 -3.392 7929

[SCHOOL=4] -1.911 2811 8275 -.680 513 -8.241 4.420

[SCHOOL=35] -.BB6 2545 15.323 =270 79 -5.100 4728
[SCHOOL=6] 0002 .000 Figure 38

2. This parameter is set to zero because it is redundant.
b. Dependent Variable: Math test.
Eeti of G {ance Par a
95% Confidence
Interval
Std. Lower | Upper
| Parameter i Estimate | Error | WaldZ | Sig, | Bound | Bound |

Repeated Measures AR1 diagonal 12.686 | 1.667 7.609 |.000 9.805 | 16413

AR1 rho =027 42 -190 | 850 =296 246

SES [subject = SCHOOL * CLASS] 1D diagonal 6,450 | 4.991 1292 | 196 1415 | 29.391
SES [subject = SCHOOL * CLASS * STUDENT] ID diagonal 30,400 | 4.782 6.358 | .000 | 22342 | 41.387 Flgure 39

2 Dependent Variable: Math test.

In Example 11, the goal is to discover whether socioeconomic status (“ses”) is an important
predictor for mathematics achievement (“mathtest”). To do so, we use the factor “ses” as a
fixed effect. We also want to adjust for the possible sampling variation due to different classes
and students. “Ses” is therefore also used twice as a random effect. The first random effect
tries to adjust for the variation of the “ses” effect owing to class variation. In order to identify
all classes in the dataset, school*class is specified in the SUBJECT option. The second random
effect also tries to adjust for the variation of the “ses” effect owing to student variation. The
subject specification is thus school*class*student. All of the students are followed for three
years; the school year (“schlyear”) is therefore used as a fixed effect to adjust for possible trends
in this period. The /REPEATED subcommand is also used to model the possible correlation of the
residual errors with each student.

We have a relatively small dataset, since there are only six schools, so we can only use it as
a fixed effect while adjusting for possible differences between schools. In this example, there
is only one random effect in each level. More than one effect can, in general, be specified,
but MIXED will assume that these effects are independent. Check to see whether such an
assumption is reasonable for your applications. In SPSS 11.5, users are able to specify corre-
lated random effects, which provide additional flexibility in modeling data.

In the Type III tests of fixed effects, in Example 11, we see that socioeconomic status does
have an impact on student performance. The parameter estimates of “ses” for students with
“ses=1" (fathers have managerial or professional occupations) indicates that they perform
better than other groups. The effect “schlyear” is also significant in the model and the students’
performances increase with “schlyear.”
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From “Estimates of Covariance Parameters” (Figure 39), we notice that the estimate of the
“AR1 rho” parameter is not significant, which means that a simple, scaled-identity structure
may be used. For the variation of “ses” due to school*class, the estimate is very small compared
to other sources of variance and the Wald test indicates that it is not significant. We can there-
fore consider removing the random effect from the model.

We see from this example that the major advantages of MIXED are that it is able look at different

aspects of a dataset simultaneously and that all of the statistics are already adjusted for all
effects in the model. Without MIXED, we must use different tools to study different aspects

of the models. An example of this is using GLM to study the fixed effect and using VARCOMP to
study the covariance structure. This is not only time consuming, but the assumptions behind
the statistics are usually violated.

Custom hypothesis tests

Apart from predefined statistics, MIXED allows users to construct custom hypotheses on
fixed- and random-effects parameters through the use of the /TEST subcommand. To illustrate,
we use a dataset in Pinheiro and Bates (2000). The data consist of a CT scan on a sample of
ten dogs. The dogs’ left and right lymph nodes were scanned and the intensity of each scan
was recorded in the variable pixel. The following mixed-model syntax tests whether there is
a difference between the left and right lymph nodes.

Example 12 — Custom hypothesis testing in mixed-effects model
Syntax:

MIXED PIXEL BY SIDE
/FIXED SIDE

/RANDOM SIDE | SUBJECT(DOG) COVTYPE(UN)
/TEST(0) ‘Side (fixed)’ SIDE 1 -1

/TEST(0) ‘Side (random)’ SIDE 1 -1 | SIDE 1 -1
/PRING LMATRIX.

Output:
Contrast Coefficients
L1

Fixed Intercept 0
Effects [SIDE=L] 1

[SIDE=R] -1
Random  [SIDE=L]| DOG 0
Effects [SIDE=R]| DOG 0 | Figure 40
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Contrast Estimates®®
| 95% Confidence |nferval |
Contrast | Estimate | Std Error df TestValye t Sig Lower Bound | Upper Bound |
L1 8502 7337 7723 000 1.159 281 -8.523 25526
2- Side (fixed) Figure 41
b. Dependent Variable: PIXEL.
Contrast Estimates®?
95% Confidence Interval
| Contrast | Estimate | Std, Error el Test Valye 1 Sia Lower Bound | Upper Bound |
] 8.502 3.205 82.839 /000 2653 010 2127 14.877
2. side (random) Figure 42
b. Dependent Variable: PIXEL.
Contrast Estimates®P
| 95% Confidence |nterval |
| Conrast | Estimate | Std Eror | of | Testvae |t | Lower Bound | Upper Bound |
L1 85018356 |3.2050572 85.681 0 2653 008 2 1311069 148725643
8- side (random) Figure 43

b- Dependent Variable: PIXEL.

The output of the two /TEST subcommands is shown above. The first test looks at differences in
the left and right sides in the general population (broad inference space). We should use the
second test to test the differences between the left and right sides for the sample of dogs used
in this particular study (narrow inference space). In the second test, the average differences of
the random effects over the ten dogs are added to the statistics. MIXED automatically calculates
the average over subjects. Note that the contrast coefficients for random effects are scaled by
one/(number of subjects). Though the average difference for the random effect is zero, it affects
the standard error of the statistic. We see that statistics of the two tests are the same, but
the second has a smaller standard error. This means that if we make an inference on a larger
population, there will be more uncertainty. This is reflected in the larger standard error of the
test. The hypothesis in this example is not significant in the general population, but it is significant
for the narrow inference. A larger sample size is therefore often needed to test a hypothesis about
the general population.

Covariance structure selection

In examples 3 and 11, we see the use of Wald statistics in covariance structure selection. Another
approach to testing hypotheses on covariance parameters uses likelihood ratio tests. The statistics
are constructed by taking the differences of the -2 Log likelihood of two nested models. It follows
a chi-squared distribution with degrees of freedom equal to the difference in the number of
parameters of the models.

To illustrate the use of the likelihood ratio test, we again look at the model in examples 9 and
10. In Example 9, we use a scaled identity as the covariance matrix of the random effect “site.”
In Example 10, however, we use a diagonal matrix with unequal diagonal elements. Our goal is
to discover which model better fits the data. We obtain the -2 Log likelihood and other criteria
about the two models from the information criteria tables shown on the next page.
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Information criteria for Example 9

Information Criterid

2 Restricted Log Likelihood 523.532
Akaike's Information Criterion (AIC) 527 532
Hurvich and Tsai's Criterion (AICC) 527.563
Bozdogan's Criterion (CAIC) 537.469
Schwarz's Bayesian Criterion (BIC) 535.469

Figure 44
The information criteria are displayed in
smaller-is-better forms.
4. Dependent Variable: CURRENT.
Information criteria for Example 10
Information Criterid
2 Restricted Log Likelihood 519.290
Akaike's Information Criterion (AIC) 537.290
Hurvich and Tsai's Criterion (AICC) 537.763
Bozdogan's Criterion (CAIC) 582.009
Schwarz's Bayesian Criterion (BIC) 573.009 Figure 45

The information criteria are displayed in
smaller-is-better forms.

2. Dependent Variable: CURRENT.

The likelihood ratio test statistic for testing Example 9 (null hypothesis) versus Example 10

is 523.532 - 519.290 = 4.242. This statistic has a chi-squared distribution and the degree

of freedom is determined by the difference (seven) in the number of parameters in the
two models. The p-value of this statistic is 0.752, which is not significant at level 0.05. The
likelihood ratio test indicates, therefore, that we may use the simpler model in Example 9.
Apart from Wald statistics and likelihood ratio tests, we can also use such information criteria
as Akaike’s Information Criterion (AIC) and Schwarz’s Bayesian Criterion (BIC) to search
for the best model.
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