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Abstract

We introduce a natural subset of the unit tangent bundle of an irreducible convex projective
manifold, which is closed and invariant under the geodesic flow, and we prove that the geodesic
flow is topologically mixing on it. We also show that, for higher-rank compact convex projective
manifolds, the geodesic flow is topologically mixing on each connected component of the non-
wandering set.

1 Introduction

This article is concerned with convezx projective manifolds, namely quotients M = Q/T" of a properly
convex open subset Q of a finite-dimensional real projective space P(V) by a torsion-free discrete
subgroup I' of PGL(V) preserving Q. Recall that properly convexr means that Q is convex and
bounded in some affine chart of P(V'). These manifolds are generalisations of hyperbolic manifolds,
to whom they bring a new diversity of geometric features. When M is compact, we say that I divides
Q and that Q is a divisible conver set (see [Ben08]).

Convex projective manifolds are endowed with a natural Finsler metric, which is not necessarily
Riemannian. This metric defines a geodesic flow (¢;)icr on the unit tangent bundle 7'M = T1Q/T,
obtained by following geodesics which are projective lines (see Section 2.1).

There is a dichotomy depending on whether € is strictly conver (meaning there is no non-trivial
segment in the boundary 02 of Q in P(V'), see Section 2.2), or not.

On the one hand, when € is strictly convex and Q/T" is compact, Benoist [Ben04, Th. 1.1] proved
that many dynamical properties of the geodesic flow on hyperbolic manifolds still hold. Then Cram-
pon and Marquis [CM14] generalised this to the case when  is strictly convex but Q/I' is not
necessarily compact.

On the other hand, Benoist proved that when €2 is not strictly convex, one of the key properties
of the classical geodesic flow, namely uniform hyperbolicity, is never satisfied. Still, Bray [Bra20b,
Th. 5.7] managed to recover some classical dynamical properties of the geodesic flow in this context:
namely, he established that the geodesic flow is topologically mizing when Q/T is compact and 3-
dimensional, not necessarily strictly convex, and I' is strongly irreducible (i.e. I' does not preserve
any finite union of proper projective subspaces). Recall that a continuous flow (f;):cr on a topological
space X is called topologically mixing if for any non-empty open subsets U,V < X and any large
enough time ¢t > 0, the set f;(U) meets V. In order to prove his theorem, Bray used — and
this is where the assumption that Q/I" is compact and 3-dimensional is crucial — another paper of
Benoist [Ben06, Th. 1.1], which gives a precise and beautiful description of these compact 3-manifolds.

In this paper, we generalise Bray’s result on topological mixing to the setting where Q/T" is not
necessarily compact, in arbitrary dimension, as we explain below.

More refined dynamical properties of the geodesic flow on convex projective manifolds will be
established in the forthcoming paper [Bla20]. In particular, we shall generalise [Bra20a] and prove
the existence of a unique flow-invariant measure of maximal entropy (Bowen—Margulis measure) on
the unit tangent bundle of rank-one (Definition 1.3) compact convex projective manifolds.

1.1 Main result

Recall that an element of PGL(V) is said to be prozimal if it has an attracting fixed point in P(V).
The prozimal limit set Ar < P(V) of T is the closure of the set of attracting fixed points of proximal



elements of T'; it is I-invariant. We denote by Aut(€2) the group of elements of PGL(V') preserving (2.
We introduce the following subset of T'M.

Definition 1.1. Let Q < P(V) be a properly convex open set and I' = Aut(2) a discrete subgroup;
denote by M the quotient Q/T. The biprozimal unit tangent bundle of M is

T' My = {veT'Q : ¢ipve Ar}/T < T'M,

where ¢4ov = limy, 1o TP v are the intersection points of the projective line generated by v with
the boundary 052.

Note that the biproximal unit tangent bundle is closed and invariant under the action of the
geodesic flow. It is contained in the non-wandering set NW(T*M, (¢;)ier) (Corollary 2.9), which
consists of those vectors v whose neighbourhoods contain a geodesic which comes back close to v
infinitely often (see Definition 2.10); we write NW(T*M) for short when the context is clear. The
main result of this paper is the following.

Theorem 1.2. Let < P(V) be a properly conver open set and T' = Aut(Q) a discrete subgroup
which is strongly irreducible. Denote by M the quotient QU/T. Then the geodesic flow on T My, is
topologically mizing.

The assumption that I' is strongly irreducible is mild, and one can always restrict to it in the divis-
ible case (see [Vey70, Th. 3] and [Ben08, Sec. 5.1]). When dim(2) = 3 and Q/I" is compact, we recover
Bray’s result [Bra20b, Th.5.7] because [Ben06, Th. 1.1] implies T My;,, = T M in that case. When
Q is strictly convex, one can see that T My, = NW(T'M) (see [CM14, §3.3] or Observation 2.12),
and Crampon—Marquis [CM14, Prop. 6.1] showed that in this case the geodesic flow is topologically
mixing on NW (T M), if 09 is smooth (for us smooth means C!, see Section 2.2). Thus, the point of
Theorem 1.2 is to treat the non-strictly convex case, where in general we can only prove that Tleip
is contained in NW(T1M), see Remark 2.11.

Our strategy of proof for Theorem 1.2 is similar to that of Bray in [Bra20b], but we manage to work
without Benoist’s geometric description [Ben06, Th. 1.1] of 3-dimensional compact convex projective
manifolds. Furthermore, we slightly shorten the proofs by using more algebraic arguments inspired
by [Ben0Oa, Ben00b] (see Section 4): they allow us to prove topological mixing directly, without
establishing first topological transitivity — a slightly weaker property than topological mixing — and
then using a closing lemma and a weak-orbit gluing lemma as in [Bra20b, Th. 4.4 & Lem.5.3].

Another strategy of proof for Theorem 1.2, in the compact case, could be to find a good geometric
description that generalises Benoist’s [Ben06] to arbitrary dimension. This is an interesting ques-
tion, and recent work suggests that such a description could exist: Benoist [Ben06], Marquis [Mar10],
Ballas-Danciger—Lee [BDL18], and Choi-Lee-Marquis [CLM20] constructed non-strictly convex, com-
pact convex projective manifolds that share a number of nice geometric features, in dimensions 3 to 7;
recent work of Bobb [Bob] extends some results of [Ben06] to all dimensions.

1.2 The biproximal unit tangent bundle

Topological mixing and topological transitivity belong to a family of transitivity properties which
have been investigated for geodesic flows on non-positively curved Riemannian manifolds X for many
decades, see for instance the classical surveys [Hed39, EHS93]. We now briefly relate Theorem 1.2 to
older results for non-positively curved manifolds.

The topological transitivity of (¢;)er on NW(T1M) for M = Q/T', when € is strictly convex, o€ is
smooth and 71 (M) is non-elementary [CM14, Prop. 6.1] is analogous to that of (¢ )eg on NW(T1X)
when X is negatively curved and 71 (X) is non-elementary, which was proved by Eberlein [Ebe72,
Th. 3.11].

When 2 is not necessarily strictly convex and Tleip is non-empty, the situation is analogous to
X being non-positively curved and rank-one, i.e. having a rank-one periodic vector. This notion was
introduced by Ballmann-Brin-Eberlein [BBE85, Def. p. 1]. Ballmann [Bal82, Th.3.5] proved that if
X is rank-one and NW(T1X) = T' X (e.g. if X is rank-one and compact), then (¢ ):er is topologically
mixing on 7' X. Coudéne-Schapira studied the action of (¢ )ier on NW (T X)) without assuming that
NW(T!X) = T'X; they established [CS10, Th.5.2] the topological transitivity of (¢;)cr on some



invariant subset NW1 (7! X) of NW(T!X), defined in [CS10, §5.1], consisting of rank-one vectors with
an extra condition.

We wish to interpret Tleip as an analogue of NWl(TlX ). The definitions of rank-one convex
projective manifolds and their rank-one periodic geodesics are now available thanks to the very recent
work of Islam [Isl, Def. 1.3 & 6.2] and A.Zimmer [Zim, Def. 1.1]. Here we adopt Islam’s definition,
which we reformulate as follows.

Definition 1.3 ([Isl]). Let Q < P(V') be a properly convex open set, I' © Aut(2) a discrete subgroup,
and M := Q/T. A periodic vector v € T'M is said to be rank-one if the endpoints ¢4 of any of
its lift o € T are smooth and strongly extremal (meaning not contained in any non-trivial segment
of the boundary 02); in this case, any torsion-free element of I' which preserves the orbit of a lift ©
is said to be rank-one. The convex projective manifold (or orbifold) M is rank-one if T*M contains
a rank-one periodic vector.

The classical Fact 2.6 below ensures that rank-one periodic vectors are contained in 7" My;,,, which
is then non-empty whenever M is rank-one. Furthermore, Proposition 3.4 tells us that, when they
exist, periodic rank-one vectors are dense in T My;,.

Further evidence for thinking that TleZ—p is analogous to NW (T X), is the fact that if M is
compact and higher-rank (i.e. not rank-one), then T'M,;;, is empty (see Remark 7.2). In this case
the proximal limit set is non-empty (Fact 2.8), but any segment between two distinct points of Ar is
contained in o).

To conclude this section, we ask the following question: if T My;, is non-empty, is it the whole
non-wandering set NW(T1M)? 1In the Riemannian setting, if X is compact and rank-one, then
NW,(T1X) is dense in NW(T1X) = T'X [CS10, §5]. In the paper in preparation [Bla20], we
prove that this is also true in the convex projective setting: if M is compact and rank-one, then
T'Myip = NW(TT*M) =T' M.

When the manifold is non-compact, the situation is more subtle. In the Riemannian setting,
Coudene-Schapira [CS10, §5.2] constructed an example where X is non-compact and NW1 (T X) is
non-empty and not dense in NW(7T?X). In the convex projective setting, we show in [Bla20] that
T My;;, may be non-empty and smaller than NW (T M) for non-compact M, even when M is convex
cocompact in the sense of [DGK].

Observe that when M is higher-rank and compact, NW(T'M) is different from T My;,, since,
contrary to the latter, the former is non-empty.

1.3 The higher-rank compact case

When M is compact and higher-rank, Theorem 1.2 does not tell us anything since 7' My, is empty.
However, in this case, the investigation of dynamical properties of the geodesic flow happens to be
easier, thanks to the recent work of Zimmer [Zim, Th.1.4], which classifies higher-rank compact
convex projective manifolds (this is similar to a classification of compact higher-rank non-positively
curved Riemannian manifolds by Ballmann [Bal85, Cor. 1] and Burns-Spatzier [BS87, Th. 5.1]). More
precisely, he proves that universal covers in P(V) of higher-rank compact convex projective manifolds
belong to a narrow and explicit list of properly convex open sets, called symmetric (see Section 7).
We use this to establish the following.

Proposition 1.4. Let M be a higher-rank compact convex projective manifold. Then the non-
wandering set of the geodesic flow on T*M has several (more than one) connected components, and
the geodesic flow is topologically mizing on each of them.

Proposition 1.4 is a direct consequence of Proposition 7.4, where the connected components of
the non-wandering set are described more precisely.

Organisation of the paper In Section 2 we recall some basic definitions and properties in convex
projective geometry. In Section 3 we investigate the regularity of endpoints of biproximal periodic
geodesics. In Section 4 we prove that, when T'M,;;, # &, the length spectrum is locally non-
arithmetic; in other words, for every non-empty open subset U of T My, the additive sugroup of R
generated by lengths of biproximal periodic geodesics through U is dense in R. In Section 5 we prove
that a geodesic, which has the same endpoint in 02 as a biproximal periodic geodesic 7y, must in the



Figure 1: The Hilbert metric and the geodesic flow (¢t = dq(z,y)).

quotient wrap around closer and closer to 7 (see Figure 4). In Section 6 we prove Theorem 1.2 using
Sections 3, 4 and 5, and classical dynamical arguments. In Section 7 we study the non-wandering set
of the geodesic flow on higher-rank compact convex projective manifolds, and prove Proposition 7.4.
In Appendix A we fill in a missing detail in Crampon’s original proof of a useful technical lemma in
convex projective geometry.

Acknowledgements I am grateful to Yves Benoist, Harrison Bray, Jean-Philippe Burelle, Olivier
Glorieux, Ludovic Marquis, Frédéric Paulin, and Barbara Schapira for helpful discussions and com-
ments. I thank my advisor Fanny Kassel for her time, help, advice and encouragements. This project
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (ERC starting grant DiGGeS, grant agreement No 715982).

2 Reminders

2.1 Properly convex open subsets of P(R?*!) and their geodesic flow

In the whole paper we fix a real vector space V = R4*!. Let Q = P(V) be a properly convex open
set. Recall that Q admits an Aut(Q)-invariant proper metric called the Hilbert metric and defined
by the following formula: for (a,z,y,b) € 0Q x Q x Q x Q aligned in this order (see Figure 1),

1
dQ(xay) = 5 10%([%3?7% b])7

where [a, x,y, b] is the cross-ratio of the four points, normalised so that [0, 1,¢, 0] = t.

Recall that if 2 is an ellipsoid, then (€, dg) is the Klein model of the hyperbolic space of dimension
d, and if Q is a d-simplex, then (£, dg) is isometric to R% endowed with a hexagonal norm.

Any discrete subgroup I' © PGL(V) of automorphisms of 2 preserves dg, hence must act properly
discontinuously on Q and therefore the quotient M = Q/T is an orbifold. Furthermore, M is a
manifold if the action is free (i.e. if " is torsion-free, by Brouwer’s fixed point theorem, applied to the
convex hull of a finite orbit of a torsion element). Note that by Selberg’s lemma [Sel60], I' always
has a torsion-free finite-index subgroup. We will work in general with I' not necessarily torsion-free,
so we set the notation T'M = T1Q/T.

The intersections of € with projective lines can be parametrised to be geodesics, which are said
to be straight. However, an interesting feature in the non-strictly convex case is that when there are
two coplanar non-trivial segments in the boundary 02, one can construct geodesics which are not
straight, see for instance the broken green segment in Figure 1. In order to define the geodesic flow
we only take into account straight geodesics: for v in T, let ¢ — c(¢) be the parametrisation of the
projective line tangent to v such that ¢ is an isometric embedding from R to © and ¢/(0) = v. For
t € R we set ¢ (v) = ¢/ (t) € TQ. See Figure 1.



The geodesic flow on T M is well defined because the two actions of Aut(2) and (¢;)er on T
commute.
Denoting by 7 : T'M — M and 7 : T'Q — ) the projections, we consider the following metrics:

Va,y e M, dy(x,y) = min{da(Z,q) : z,7 € Q lifts of z, y},

1 —
VU,’LU erT Qa dTlﬂ(U’w) - Orgggxl dQ(W¢tU,W¢tW),

Vo, we T M, dpipy(v,w) = min{dpo(d,%) : 9,w e T'Q lifts of v, w}.

The following remark is a direct consequence of the definition of the Hilbert metric.

Remark 2.1. Let Q < P(V) be a properly convex open set, and fix an affine chart containing €. Then
Ba(z,r)c (1 —e?)(Q—2)+z

for all z € Q and r > 0, where (1 —e")(Q — z) + « is the image of Q under the homothety (of the
affine chart) centred at x and with ratio 1 —e~2", and Bq(x,) is the closed ball of radius r, centred
at x, for the metric dq.

2.2 Smooth and extremal points of the boundary

We recall here some terminology on convex sets. Let < P(V) be a properly convex open set. Let
& € 092 be a point of the boundary.

o A supporting hyperplane of Q at £ is a hyperplane which contains £ but does not intersect €.
Note that there always exists such a hyperplane.

e The point £ is said to be a smooth point of 02 if there is only one supporting hyperplane of
at &, which we then denote by T¢0€Q.

e The point ¢ is said to be extremal if it is not contained in the relative interior of a non-trivial
segment contained in the boundary o).

e As it was defined in the introduction, € is said to be strictly convexr when all points of 0S) are
extremal.

e As in Definition 1.3, we shall say that & is strongly extremal if it is not contained any non-trivial
segment contained in the boundary 0f2.

2.3 Proximal linear transformations

In this section we recall the notion of a proximal linear transformation, which was used in the definition
of the proximal limit set Ar and the biproximal unit tangent bundle Tleip in Section 1.1.

Notation 2.2. If Wy and W5 are two subspaces of V' such that Wy n Wa = {0}, we write W1 @Wy c V
for their direct sum and P(W7) @ P(Wy) = P(W; @ Ws) for its projectivisation. In particular, if
x,y € P(V) are two distinct points, we write 2 @ y for the projective line through x and y.

Definition 2.3. A linear transformation g € End(V) is prozimal if it has exactly one complex
eigenvalue with maximal modulus among all eigenvalues, and if this eigenvalue has multiplicity 1.
The associated eigenline in P(V) is the attracting fixed point of g and is denoted by a:;r.

An invertible linear transformation g € GL(V) is said to be biprozimal if g and g~! are proximal.
The attracting fixed point of g—' is the repelling fixed point of g and is denoted by z,. The pro-
jective line x} @z (see Notation 2.2) is the awis of g and is denoted by axis(g). The g-invariant
complementary subspace to the axis of g is denoted by acg. Note that the notions of biproximality,
attracting/repelling fixed point, and axis, are well defined for the image of g in PGL(V').

Remark 2.4. The set of proximal linear transformations is open in End(V'), and the map sending a
proximal linear transformation to the pair (attracting fixed point, maximal eigenvalue) is continuous.



Remark 2.5. As observed by Benoist [Ben97, Lem. 3.6.ii], for any irreducible subgroup I' € PGL(V)
which contains a proximal element, the proximal limit set is the smallest closed I'-invariant non-empty
subset of P(V); in particular, the action of I' on Ar is minimal (i.e. any orbit is dense). Indeed, consider
any proximal element v € T, and let P(W) < P(V) be the 7-invariant complementary subspace to
x7. By irreducibility, any closed T-invariant non-empty subset X < P(V') contains a point x outside
P(W), and then 27, which is the limit of the sequence (y"z)nen, belongs to X.

2.4 Periodic geodesics and automorphisms of I

In this section we recall the link between periodic geodesics in T1/T" and conjugacy classes of I'. Let
Q < P(V) be a properly convex open set. Let g € GL(V). We denote by A;(g) = -+ = Ag+1(g) the
non-increasing sequence of logarithms of moduli of g; we set

g) i= 504 (9) = A (9)): (21)

Observe that ¢(g) only depends on the class of g in PGL(V). If g preserves {2, then
l(g) = inf{do(z,g-x): zeQ} >0. (2.2)

The right-hand side of (2.2) is called the translation length of g. See [CLT15, Prop. 2.1] for a proof.
Combined with an elementary computation, (2.2) yields:

Fact 2.6. Let Q < P(V) be a properly convex open set, let T' < Aut(QQ) be a discrete subgroup, and let
M = Q/T. Then for any lift in Q of any periodic straight geodesic of M, there is an automorphism
~v € ' which preserves it and acts by positive translation on it. Let 4 € GL(V) be a lift of v. The
endpoints in 02 of the geodesic are fized by v, the associated eigenvalues of 4 are A1 (%) and Ag+1(%),
and the length of the geodesic in M is the translation length of v. If furthermore these endpoints are
extremal, then ~ s biprorimal.

By Fact 2.6, rank-one elements of T' (Definition 1.3) are biproximal. Hence rank-one periodic
vectors of T M belong to T My,,.

Definition 2.7. Let Q < P(V) be a properly convex open set and I' = Aut(Q2) a discrete subgroup.
Let v € I be a biproximal element whose axis meets 2. Then the periodic geodesic associated to =y
is said to be biproximal, and the unit tangent vectors along this geodesic are said to be biprorimal
periodic.

There are cases where v € I' is biproximal but its axis does not intersect 2 (e.g. when Q is a
triangle, or is symmetric as in Section 7). Then we cannot make sense of a straight periodic geodesic
associated to .

2.5 Density of biproximal geodesics

We gather here two results of Benoist which imply that biproximal periodic vectors are dense in
T M.

Fact 2.8 ([Ben00a, Prop.1.1] & [Ben97, Lem. 3.6.iv]). Let I' < PGL(V) be a strongly irreducible
subgroup.

1. If T preserves a properly convexr open set Q@ = P(V), then it contains a proximal element.

2. If T contains a proximal element, then then the following subset is dense in Ar x Ap:

{(zF,27) € Ap x Ar : vy € T biprozimal}.
Corollary 2.9. Let Q < P(V) be a properly convex open set and T' < Aut(Q) a strongly irreducible
discrete subgroup. Denote by M the quotient Q/T, and suppose that T My, is non-empty. Then
biprozimal periodic geodesics exist and are dense in Tleip.



2.6 The non-wandering set

In this section we recall the definition of the non-wandering set and the link between the non-
wandering set of the geodesic flow on T*M and the non-wandering set of the actions of T and Aut(2)
on the space of geodesics of (2. This will be used in Section 7.

Definition 2.10. Let X be a locally compact topological space equipped with a continuous action
by a locally compact group G. The non-wandering set NW(X, G) is the set of points « in X such
that for any compact neighbourhood U of x, the set {g€ G : gU n U # &} is non-compact.

In other words, it is the set of points all of whose neighbourhoods come back infinitely often under
the action; we call such points non-wandering. The non-wandering set is closed and G-invariant. Note
that if X is compact but G is not, then the non-wandering set is non-empty. When G is R, i.e. when
we have a flow (¢¢)wer on X, observe that given a non-wandering point z € X and a neighbourhood U
of x, one can find arbitrarily large positive times t such that ¢,U n U # J; indeed, if ¢,U nU # &,
then ¢_,UNnU # &.

In our setting, there are three non-wandering sets of interest for us. Let Q < P(V') be a properly
convex open set, let ' < Aut(£2) be a closed subgroup of automorphisms, and let M be the quotient
Q/T. One can consider the non-wandering set NW (T M, (¢¢)er) of the geodesic flow.

Remark 2.11. Any vector of T'M which is tangent to a periodic straight geodesic belongs to the
non-wandering set NW (T M, (¢¢)icr). As a consequence, if I' is strongly irreducible, then T My, is
contained in NW(T*M, (¢;)er) by Corollary 2.9.

Let us denote by Geod(Q2) = TQ/(¢)ser the set of straight geodesics of 2: it is an open subset
of 002, consisting of the pairs (z,y) such that 2 # y and the projective line through = and y meets €.
The group I" naturally acts on Geod(£2) and one can consider its non-wandering set NW(Geod(Q2),T").
Finally, one can consider the two commutative and proper actions of I" and R (by the geodesic flow)
on T, it yields the non-wandering set NW (T, T x R). All three of these non-wandering sets are
actually identified in the following sense. Denote the canonical projections by g : T'Q — Geod(1Q)
and mp : T'Q — T'M. Then

75 H(NW(Geod(Q),T)) = NW(T'Q, T x R) = 7p (NW(T' M, (¢4 )ser)).-

We will use this while studying symmetric properly convex open sets in Section 7.

To end this section, we observe that the non-wandering set NW (T M, (¢;)ser) is contained in
another (¢;)ser-invariant subset 7'M, defined similarly to T1]\41n'p7 but using another limit set in the
boundary. Recall that Danciger, Guéritaud, and Kassel [DGK, Def. 1.10] defined the full orbital limit
set AZ"" < 0Q as the union, over all x € Q, of the set of accumulation points of the orbit T - z; the
full orbital limit set always contains the proximal limit set. Similarly to Tleip, we can consider

T'Meore := {v € T*Q : p1opv € AZPYT < TIM.,

Observation 2.12. Let Q < P(V) be a properly convex open set, let T' be a discrete group of
automorphisms of 1, and denote by M the quotient Q/T. Then

NW(TlMa (¢t)te]R) = TlMcore~

Proof. Consider a vector v € T') whose projection in T' M is non-wandering. Let x be the footpoint
of v. We want to show that ¢.v is an accumulation point of I"- . Since the projection of v in T M is
non-wandering, we can find sequences of vectors (v, ), in T € converging to v, of positive times (t, ),
going to infinity, and of automorphisms (7). in I' such that (driq(dt, vn, ¥ v))n tends to zero. Since
(Un)n tends to v and (t,), goes to infinity, (7¢:, v, )n must converge to ¢ov. By Remark 2.1, the
fact that (dq (7, Vn, Ynx))n tends to zero implies that (v,x), also converges to ¢ov in P(V). O

The full orbital limit set AI‘Z”’ and Observation 2.12 will not be used in the remainder of the paper.

3 Endpoints of biproximal periodic geodesics are smooth

This section contains an elementary result (Lemma 3.1), which will be used in the proof of topological
mixing in Section 6. Furthermore, as a more immediate consequence, we also use it to justify a claim
of the introduction: that rank-one periodic geodesics are dense in the biproximal unit tangent bundle
of rank-one manifolds (Proposition 3.4).



3.1 On the regularity of endpoints of biproximal periodic geodesics

The main consequence of the following lemma is that we will be able to apply Proposition 5.1 to
biproximal periodic vectors.

Lemma 3.1. Let Q < P(V) be a properly convex open set. Let g € PGL(V) be a biprozimal automor-
phism of Q. Then axis(g) N is non-empty if and only if x;' is smooth; in this case TI; 00 = x}'@x(g).

Proof. Assume that x; is not smooth. Then there is a supporting hyperplane H of Q2 at m;’ which
is different from z} @ z). Let € H \ (z} @ 2]), so that the sequence (¢9~"x), tends to z,. The
sequence of projective lines through ¢~ ™« and x; must converge to the axis of g, and they are all
contained in P(V') \ © which is closed. Therefore P(V') \ € must contain the axis of g as well.
Conversely if P(V) ~\ Q contains axis(g), then x has a supporting hyperplane which contains
axis(g), and which is thereby different from the supporting hyperplane xg &) x;. O

3.2 Rank-one periodic geodesics and their dual

In this section we give several equivalent conditions for an automorphism of a properly convex open
set to be rank-one (Definition 1.3), which follow from Lemma 3.1. It will be used in Section 3.3, and
may be interesting in its own right.

Let us recall the notion of duality for properly convex open sets. We identify the dual projective
space P(V*) with the set of projective hyperplanes of P(V'). Let Q be a properly convex open subset
of P(V). The dual of Q, denoted by Q*, is the properly convex open subset of P(V*) defined as the
set of projective hyperplanes which do not intersect . We naturally identify PGL(V) and PGL(V*),
then Aut(2) identifies with Aut(Q*), and the attracting (resp. repelling) fixed point of the action on
P(V*) of any biproximal element g € PGL(V) is #} @ a3 (resp. z; ®x)).

Lemma 3.2. Let Q < P(V) be a properly convex open set. Let g € PGL(V') be a biprozimal auto-
morphism of Q. Then the following are equivalent:

(a) g is rank-one;

(b) :C;,sc; € 092 are smooth and strongly extremal points;

(c) :v; 1s strongly extremal;

(d) x} is smooth and x3 does not intersect 09;

(e) the element g seen as an automorphism of Q* is rank-one;

(f) the azis of g in P(V) intersects Q, and the axis of g in P(V*) intersects Q*.

We will need in the proof two elementary facts concerning duality of properly convex open sets.
Recall that the canonical isomorphism between V' and V** identifies 2 with Q**. By definition of
Q*. the boundary 0Q* is the set of supporting hyperplanes of ; by duality 02 = 0Q** is the set of
supporting hyperplanes of Q*.

Fact 3.3. Let Q < P(V) be a properly convex open set.

(i) A smooth point x € 0N is strongly extremal if and only if its tangent space T,0 is a smooth
point of 0QV*; in this case T,08) is strongly extremal.

(ii) For any H,H' € 0Q2*, the segment [H, H'] Q" is contained in 0Q* if and only if H A H' 0
18 non-empty.

Proof of Lemma 3.2. e The equivalence between (a) and (b) is a consequence of Fact 2.6.
e The fact that (b) and (e) are equivalent is a direct consequence of Fact 3.3(i).

e Let us see why (d) and (f) are equivalent. By Lemma 3.1, the axis of g in P(V) intersects {2
if and only if ] is smooth. By Fact 3.3(ii), the axis of g in P(V*) intersects Q* if and only if
xg N o = .



e That (b) implies (c) is immediate.

e Let us prove that (c) implies (f). Assume that 2 is strongly extremal. Then [z, 2] is not

contained in 0€, so the axis of g in P(V') intersects . Furthermore,xg N 0f) is contained in
(zg@x}) N O~ {x}} which is empty. By Fact 3.3(ii) this exactly means that the axis of g in

P(V*) intersects Q*.

e Let us prove that (f) implies (b). Assume that the axis of g in P(V) intersects 2, and that the
axis of g in P(V*) intersects Q*. By Lemma 3.1, the points z},z, € 0Q and (z} @ 2)), (z; ®
1:2) € 0Q* are smooth. By Fact 3.3(i), this implies that x} and z are strongly extremal. ]

3.3 Density of rank-one periodic geodesics

The following proposition justifies a claim of the introduction, and it will not be used in the remainder
of this paper.

Proposition 3.4. Let Q < P(V) be a properly convex open set. Then

1. for any pair (§,m) € Geod(QY) such that £ is strongly extremal, there exist neighbourhoods U of
§ and 'V of ) such that for any biprozimal automorphism g € Aut(Q2), if (v}, x,) e U xV, then
g is rank-one;

2. if T < Aut(Q) is a strongly irreducible discrete subgroup such that M = Q/T" is rank-one, then
rank-one periodic geodesics are dense in T' My;,. In particular T My, is not empty.

Proof. 1. Let us assume by contradiction that there is a sequence of biproximal automorphisms
(9n)nen which are not rank-one, and such that (z; )Jnen and (z, )nen respectively converge
to § and n. For n large enough, (z, ,x, ) € Geod(Q2), hence by Lemma 3.2(d), there exists

g
&n € xgn n 09Q. Up to extraction we can assume that (£,)nen converges to some & € 9. Since

[En, x‘;n] c (xgn ) x;ﬂ,) nQcoN

for all n, passing to the limit we obtain that [¢’,£] < Q, which implies that £ = &, because ¢ is
strongly extremal. Similarly, [£,,z, ] = 0 for all n, so [§,n] = €2, which is a contradiction.

2. We denote by g5 the set of smooth and extremal points of d2. By assumption, the T'-
invariant subset Ar N 0sse€2 is non-empty, hence dense in Ar because the action of " on Ar
is minimal (Remark 2.5). Therefore it is enough to show that attracting/repelling pairs of
rank-one biproximal elements of I' are dense in (Ar N 055.2)%. Consider a pair of points £ # 7
in Ar N 04582, and neighbourhoods U and V' of respectively £ and 7. By point 1. above, there
are smaller neighbourhoods U’ < U and V' < V such that any biproximal automorphism of
Q with attracting/repelling pair in U’ x V' must be rank-one. By Fact 2.8.2; there is such an
automorphism in T". O

4 Non-arithmeticity of the length spectrum

In this section we prove the following.

Proposition 4.1. Let Q < P(V) be a properly convex open set and T' = Aut(Q) a strongly irreducible
discrete subgroup. Denote by M the quotient Q/T". Let U < Tleip be a non-empty open set. Then
the additive group gemerated by the lengths of biproximal periodic geodesics through U is dense in R.

In other words, not only are biproximal periodic geodesics dense in T My;,, but moreover the
length spectrum is locally non-arithmetic.
Our proofs are heavily influenced by the work of Benoist [Ben00a, Ben00b]; see also [BQ16, Ch. 7].



4.1 Density of the group generated by Jordan projections

We gather here two results which imply that any strongly irreducible semi-group of automorphisms
of a properly convex open set has a non-arithmetic length spectrum.
A proof of the following result can be found in [CM14, Prop. 6.5].

Fact 4.2 ([Ben00a, Rem.p.17]). Let Q@ < P(V) a properly convex open set, I' < SL(V) a irre-
ducible discrete strongly subgroup preserving ). Then the Zariski-closure of T' is semi-simple and
non-compact.

The proof of the following result uses the language of semi-simple Lie groups, see e.g. [BQ16, Ch. 6]
for definitions.

Proposition 4.3. Let I' ¢ SL(V) be a sub-semi-group whose Zariski-closure is irreducible, semi-
simple and non-compact. Then

t(v), vel) =R,
where £() is given by (2.1).

Note that Proposition 4.3 can (and will) be applied, not only to subgroups, but to sub-semi-
groups. This is the key observation that allows us to slightly shorten Bray’s proof of the topological
mixing. Proposition 4.3 is a consequence of the following famous theorem of Benoist.

Fact 4.4 ([Ben00b, Prop.p.2]). Let G be a connected real semi-simple linear Lie group. Let ag be
a Cartan subspace of its Lie algebra, let af, < ag be a closed Weyl chamber, and let A\ : G — af
be the associated Jordan projection. Let I' € G be a Zariski-dense sub-semi-group. Then the additive
group generated by A\g(T) is dense in ag.

Proof of Proposition 4.3. Let G be the Zariski closure of I in SL(V'), with associated Cartan subspace
ag, Weyl chamber aE, and Jordan projection A\g : G — ag. Up to replacing I' by a finite-index
subgroup, we may assume that G is connected. We denote by xi1 (resp. xq) the highest weight of
the representation p : G — SL(V) (resp. the dual representation in SL(V*)), which are linear maps
defined on ag. By definition, for any element a in af;, the numbers x1(a) and yq4(a) are respectively
the highest and lowest eigenvalues of dijqp(a). Furthermore,the moduli of the eigenvalues of p(g), for
g € G, are the eigenvalues of exp(diqpoAg(g)), as a consequence £(p(g)) is (x1°Ac(9) — xa°0Aa(9))/2.
By linearity, the additive group generated by the translation lengths of the elements of I is the image
by (x1 — xa)/2 of the additive subgroup of ag generated by the Jordan projections of the elements
of I'. We conclude thanks to Fact 4.4. O

4.2 Construction of a suitable free sub-semi-group

Let Q < P(V) be a properly convex open set, let ' = Aut(f2) be a strongly irreducible subgroup,
and denote by M the quotient /. In order to prove Proposition 4.1 we will apply Fact 4.2 and
Proposition 4.3 to suitable free sub-semi-groups of I'. Recall that given a non-empty open subset
U c T'Q, we are looking for lots of biproximal periodic geodesics through U. To this end, we are
going to construct, using a ping-pong argument, a strongly irreducible free sub-semi-group of I" all of
whose elements are biproximal with axis going through U (this is what suitable means here).

The first lemma gives us sufficient conditions for a family of automorphisms to generate a suitable
free sub-semi-group.

Lemma 4.5. Let k =2 and v1,...,v € PGL(V) be biproximal such that:
(a) Span(zf, 1<i<k)=V,
(b) (25, =0,
(c) and x5, ¢ xgj (—Bmgj forany 1 <i#j<kand a,p € {£}.

Let T = {v;,1 < i < k) be the group generated by the v;’s. Then the action of T' on V is strongly
irreducible.
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Furthermore, if we are given a family {U* : 1 < i < k and o = +} of disjoint compact neigh-
bourhoods in P(V') of the points {z5, : 1 < i < k and a = £}, such that U n (33?;1 @ xgj) and
UXn (x;f‘@mgi) are empty whenever i # j and «, 8 € {x}, then for any large enough integer N > 0,
denoting by I the group generated by yi¥, ...y,

(1) TV is strongly irreducible,
(2) T' is freely generated by ¥V, ... v,

(3) every element of T is biprozimal,

(4) for any non-trivial cyclically reduced word v = ~**™

21
lies in Ufl‘l while its repelling fixed point lies in U;a",

vi"N of I, its attracting fized point

(5) and, denoting by '™ the sub-semi-group generated by v, ... ,W,JCV, every word v € T'" is cyclically
reduced and its attracting fized point lies in | J; U;" while the repelling fized point lies in | J, U, .

To prove this we need a technical fact:

Fact 4.6. Consider a sequence (gn)n in PGL(V), a point x in P(V) and a compact neighbourhood
U of x such that the sequence (gn(U))n converges to x. Then the accumulation points of (gn)n in
P(End(V)) are rank-1 projectors on x whose kernel does not intersect the interior of U.

Proof. Recall that V' = R9*1 5o that we can use the usual Cartan decomposition in GL(V): for any
n we can write g, = [knanl,], where the elements k,, and [,, are in the (maximal compact) classical
orthogonal subgroup K = O(d + 1) of GL441(R), and a,, is diagonal with positive non-increasing
entries. Assume without loss of generality that (k,), and (,,), converge in K with respective limits
k and I. That (g,), contracts an open set to a point implies that [a,], must converge to [p], where
p is the projector onto the first vector e; of the canonical basis. Assume without loss of generality
that (ay), converges to p, so that (knanl,), converges to kpl, a rank-1 matrix whose image is k(eq)
and kernel is /7! Ker(p). The assumption that (k,a,l,(U)), tends to z implies that (a,l(U)), goes
to k~1(z), which in turn implies that [(U) n Ker(p) = & and k~ 'z = e;. O

Proof of Lemma 4.5. Let us first prove that the action of I on V is irreducible. Consider a non-zero
subspace W < V which is stable under I', and a non-zero vector w € W. Using the assumption (b),
we can find ¢ such that w ¢ xgi, and then o = £ such that w ¢ 27" @ mgi, so that the sequence
(79" [w])n converges to z5,. This means that x5, = W. Similarly for any j # i and 8 = £, because

z5, ¢ x;jﬁ @ xg]_ (assumption (c)), we have x?ﬁ < W. Since k > 2 we deduce that 7 < W. By
assumption (a) this means that W = V.

Now let T'; = I be a finite-index subgroup. There exists an integer N > 0 such that T'y = (¥, 1 <
i < ky < T'y. The group I's verifies the same hypotheses than T", hence its action on V is irreducible,
and so is that of I'y: we have proved that I' is strongly irreducible.

Let us prove the second part of the lemma. Let U be a compact set with non-empty interior,
disjoint from the U/*’s and the zJ, & xgi 's. Let N be large enough so that for any ¢ = 1,...,k and
a =T,

wNUouugo | Uf) eup.
J#i
pit

Then IV = (y¥, 1 <i < k) is free thanks to a ping-pong argument: prove by induction on length

that for any non-trivial reduced word:

N » N
i ...7:-): (UuUiipu U Ujﬂ)cUiol‘l.
J#ip
=t

Assume for the rest of the proof that this IV is actually 1.
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Now if by contradiction we could not find N large enough to have the conclusions (3) and (4) of
the lemma, there would exist a sequence of cyclically reduced words

o™, o™ o™ (T:L) O‘(’:L)N
Tn = 'YZ.(}L) 'Y (71L) 'Y (i) cee 71.(2) 'Yl.(ﬁ)

1 Pn Pn

with (Ny,), going to infinity and ( ,aﬁ”)) # (zgj), —az(,n)) for every n, and which are not biproximal
o™
with attracting/repelling pair in U,<n> X U{w" . Up to extracting assume that z(n) = 1, zl(yn) = 7,
i Dy

ol™ = o and oY = B do not depend on n.

Finally see that the sequences (7y,), and (v, !), respectively contract U® into zg, and U, # into

)] A and apply Fact 4.6 to them. Up to passing to a subsequence we can assume that (fyn)n and
(77 1) converge to rank-1 projectors on respectively zg, and on x;f . Finally, by Remark 2.4, +,, and
v, 1 are proximal with attracting fixed points respectively in U® and U fﬁ : this is a contradiction. [

The next proposition uses the strong irreducibility of our group of automorphisms to find a family
of automorphisms which verifies the conditions of Lemma 4.5, hence which generates a suitable free

sub-semi-group.

Proposition 4.7. Let Q < P(V) be a properly convex open set and T < GL(V) be a strongly
irreducible discrete subgroup preserving Q. Denote by M the quotient Q/T. Assume that T' My, # &.
Let U < T'Q be a non-empty open subset whose projection in T'M intersects T' My;p. Then we can
construct a discrete subgroup I < T generated as a group by a sub-semi-group I'" such that:

o I acts strongly irreducibly on V,

o IV is free,

e cvery element of IV is biproximal,
o for every v in I, axis(y) N Q # &,
e and for every v in M, axis(y) nU # .

Proof. By Corollary 2.9 we can consider a biproximal automorphism v € I' whose axis intersect U.
We are going to construct vi,...,7 € I' which verify the assumptions of Lemma 4.5 (with v = =)
and such that axis(y;) N Q # ¢ for any i. Then for all (i,a) # (4,8) € {1,...,k} x {£}, the
fact that =7, ¢ xﬁjj &) xgi implies that (xﬂyl ® xfj) N Q # ¢, because xfj is a smooth point of the
boundary (see Lemma 3.1) and xf @ xg, is its tangent hyperplane. At this point we can consider
neighbourhoods U{*’s of the z7,’s small enough to satisfy the hypotheses of Lemma 4.5 and such that,
for all (i,) # (j, 8) and for each pair (§,n) in UF x Ujﬁ7 the intersection (£ @ n) N Q is non-empty,
and such that for each pair (£,7) in U;" x U, the intersection (£ @) n U is non-empty. Then by
Lemma 4.5, for N large enough, considering the sub-semi-group generated by v yN¥4dV, i = 1 k
is a possible way to conclude the proof of Proposition 4.7.

We are going to construct the +;’s inductively, taking conjugates of . First set v = 7.

Let ~q,... ,’yk be constructed such that for any 1 <i # j <k and o, B € {£}, 2, ¢ xﬁ @z

If Span(z3,) = V and [); 29, = 0 then we are done.

Otherwme we are looking for Yi41 = gvg~ ! where g € T is such that:

e foralli<kand a,f in {£},
Toug = 0(5) ¢ 25, @23,

o for all i < k and «, 3 in {£},
25, ¢ g(a§ ®af),

e if Span(zS,, i < k,a = 1) # V then

ga¥ ¢ Span(aS, i < k,a = +),

12
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Figure 2: v and w in the same strong stable manifold

e and if (), 29, # 0 then

Call Ty the irreducible component of the identity in I" for the Zariski topology. Then it is well known
(see e.g. [BQ16, Lem. 6.21]) that I’y is a normal finite-index subgroup of I'. Hence its action on V is
also strongly irreducible. Note that each condition above is Zariski-open with respect to g € I'y, and
non-empty because of irreducibility of the action of I'y. Since I'y is Zariski-irreducible, it implies that
the (finite) intersection of all conditions is still non-empty, and we can thus construct vy541. Notice
that the two last conditions ensure that the process will eventually stop. O

4.3 Proof of Proposition 4.1

Up to taking a finite-index subgroup we can assume that I' € PSL(V'), and consider its (full) preimage
[c SL(V). Let U = T'Q be the preimage of U. Proposition 4.7 gives a strongly irreducible subgroup
I'cT generated by a sub-semi-group I't < I'. By Fact 4.2, the Zariski-closure of T'" (which is
also that of ITV) is semi-simple and non-compact. By Proposition 4.3, the additive group generated
by {¢(7) : v € '}, is dense in R. But by Proposition 4.7, each element ~y of T't is biproximal with
axis through 17; by definition this axis projects on a biproximal periodic geodesic through U, whose
length is £(7).

5 Strong stable manifolds

The strong stable manifold of a vector v € T'Q is a classical notion in the theory of dynamical
systems; it is defined as the set of vectors w € T2 such that dpiq (¢, ¢sw) goes to zero as t goes
to infinity. The goal of this section is to establish the following geometric description of the strong
stable manifolds centred at smooth points.

Proposition 5.1. Let Q < P(V) be a properly convex open set, let v e TTQ and let £ := ppv € 0N.
Then

1. For any w € T*Q such that pow = &, the function t — dpig (v, dpw) is non-increasing.

2. Suppose £ is smooth. Then for any w € T'Q with ¢ppw = &, there is a unique time to € R for
which the lines ¢_ov @ p_ow and v @ T, w intersect on TedN (see Figure 2); moreover tg
is the unique time for which v and ¢, w are on the same strong stable manifold, i.e.

driq (v, pri,w) . 0.
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Figure 3: Ilustration for the notations in Proposition 5.3

5.1 Crampon’s Lemma

Let us first state a useful lemma about convex projective geometry, which in particular implies the
first part of Proposition 5.1. We will give a proof of Lemma 5.2 in the appendix, to clarify a missing
detail in the original proof.

Lemma 5.2 ([Cra09, Lem.8.3]). Let Q be a properly convex open subset of P(V). Let ¢1 and co
be two straight geodesics parametrised with constant speed, but not necessarily with the same speed.
Then for all0 <t < T,

dQ(C]_ (t), Cg(t)) < dQ(Cl (0), 02(0)) + dQ(C]_ (T)7 CQ(T)).

5.2 An explicit computation of lim;_,,, driq(¢dv, pw)

We now prove a proposition from which the geometric description of strong stable manifolds will be
a corollary.

Proposition 5.3. Let Q < P(V) be a properly convex open set. Take v # w in T both pointing at
&€ 09, let a be the intersection point of Tv @ Tw and ¢_xv @ d_mpw, and suppose that the projective
line a®& does not intersect Q). Let P be the projective plane spanned by x = mv, y = 7w, and &, let D
and D’ be the two lines of P starting at &, tangent to 092, such that the four lines D, (@ x), (EDy), D’
lie in this order around &, and let § > 0 be half the logarithm of the cross-ratio of these four lines (see
Figure 3). Then:

dQ(W¢t'U,7T¢tU)) H—C;)O 6 and dTIQ(¢tU,¢tW) H_:; J.

Proof. We consider z; = w¢v and y; = wo,w. Since dg(z,z;) =t = do(y,y:) and by definition of
the cross-ratio, we see that y; € (Y@ &) N (a @ z¢). Let by and ¢; € 0 be such that the four points
be, T4, Yt, ¢¢ are aligned in this order. We consider D; = (£ @ b;) and D, = (£ @ ¢t). By definition of
the tangent lines, the two sequences (D;):—q and (D}):—q converge respectively to D and D'. By
definition dg (4, y;) is half the logarithm of the cross-ratio of the four lines Dy, (€ ® x), (€ ® y), D;,
which converges to the cross-ratio of the four lines D, (@ z), (D y), D’ O

5.3 Proof of Proposition 5.1

By definition of drig, in order to prove that ¢ — drig(¢sv, $rw) is non-increasing, it is enough to
prove that t — dqo(m¢iv, mw) is non-increasing. Observe that it will also have as a consequence
drig(v,w) < do(mv, mw). We fix t > 0. We consider a sequence (z,)neny € Q2 converging to &,

14



Figure 4: Proof of mixing. On the left: In . On the right: In the quotient M = Q/T.

and the sequences of vectors (vp)neny and (wy)neny in THQ such that mv, = 7v, while Tw, = 7w
and Tdqg, (rv,z,)Vn ANd Thge, (nw,z,)Wn are equal to x, for all n. It is then easy to see that ¢;(v) =
limy, o0 @1 (vy,) and that ¢ (w) = lim, o ¢¢(wy,). By Lemma 5.2, we obtain

dQ(W¢tvn,W¢thn) < dg(mv, Tw),
rYCTI

and from this we let n go to infinity, and get the desired inequality since % converges to 1.

If £ is a smooth point of 02 and the lines ¢_,v @ p_w and mv@ ww intersect on TS, then the
fact that driq (P, drw) goes to zero as t goes to infinity, is an immediate corollary of Proposition 5.3.

6 Proof of Theorem 1.2

Let U; and U be two open subsets of Tleip. Let us prove that there exists T > 0 such that
¢t(U1) NUy; # P forallt>T.

Since the map (t,v) — ¢¢(v) is continuous, we can find an open subset ¢ # U} < Us, and € > 0

such that ¢[_ (Usy) < Us. As a consequence, for any time ¢ € R, if ¢;(U1) and U; intersect, then for
all s which are e-close to t, the sets ¢s(U;) and U, intersect.
_ Let 7p : T1§2~ — T'M Dbe the natural projection. Let us find small non-empty open subsets
Vi 7r1?1U1 and V5 < 7r1?1U§ such that for any (1, %) € Vi x Vi, the line (¢— o1 DPopliz) intersects €.
We consider @, € mp ' (U1) and @ip € ' (U4) biproximal periodic, they exist thanks to Proposition 4.1.
By Lemma 3.1, ¢4 0;, where i = 1,2, are smooth. By irreducibility of I' there is an automorphism
v € I' such that T} 5,00 # Ty__ 5, 0. This implies that ¢_ U1 @ydls intersect €2, and since this
condition is open, as well as 7 U, and T lUé, we can take for V; and V5 small neighbourhoods of
le and ’7’[7,2 -

For © = 1,2, pick 9; € V; biproximal with period 7; such that 7 Z + 72Z is 5-dense in R; this is
possible thanks to Proposition 4.1 and Observation 6.1 below.

We know that (¢_o01, pppta) = 2. Let us consider w € T tangent to this line: it is pointing
forward at ¢4 02 and backward at ¢_,v1. By Lemma 3.1, the points ¢4.0; are smooth. Using
Proposition 5.1, we can find ¢; and t; € R which verify lim; .o dpig/r(é—tv1,ér, —rw) = 0 and
limy o drio/r(Gev2, G, 11w) = 0, where for ¢ = 1,2, v; = 7r¥;, and w = mpw. This implies that

w001

there is an integer N > 0 such that forany n > N, ¢4, —pnr,w e Vi 1= 7rr171 and ¢4y ynr,w € Vo 1= 7T1""72.
We deduce that ¢.(V1) n Vo # & for any t in {—t; + ta + ny171 + naTa : ny,ne = N}

We conclude by observing that the e-neighbourhood of {—¢1 + to + n17 + name : ny,ng = N}
contains a real interval of the form [T, 00) for T large enough. Indeed, there exists N’ > 0 such that
[0,71] is contained in the e-neighbourhood of {nim + na7 : |n;| < N’}. Then the e-neighbourhood of
{—t1 + ta + n171 +naT2 i ny,ne = N} contains [—t1 + to + (N + N')7 + (N + N')7, 0. This ends
the proof of Theorem 1.2.
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Observation 6.1. Let A be a subset of R which generates a dense additive subgroup G of R. Let
x,e > 0. Then there is g € A such that ©Z + gZ is e-dense in R (i.e. any point in R is at distance at
most € from xZ + gZ).

Proof. Up to replacing A by A/x and e by ¢/x, we can assume that x = 1. Then there are two
possibilities.

e The set A contains an irrational number g. Then Z + ¢Z is dense in R.

e The set A is contained in Q. Let ¢ € N* be such that q% < €. The subgroup ﬁZ is not dense
in R, so A must contain an element outside of it, of the form % with p and ¢ coprime and g > qq.
The group Z + %Z = %Z is e-dense in R. O

7 The geodesic flow in the higher-rank compact case

The goal of this section is to prove Proposition 1.4. We are actually going to prove a finer state-
ment: that the connected components of the non-wandering set of the geodesic flow are quotients of
homogeneous spaces whose Haar measure is mixing.

We denote by H the classical division algebra of quaternions, and by O the classical non-associative
division algebra of octonions. Fix an integer N > 3 and the algebra K = R, C, H, or, if N = 3, O.
We shall use the following notation. In the case K = R, conjugation is the identity and we abusively
say Hermitian instead of symmetric.

e For x € K, the element T € K is the conjugate of x.

e We consider the Hermitian bilinear form on KV given by {(z,y) = Zfil Ty

e The real vector space V = Vi x consists of the Hermitian matrices of size N with entries in K.
e The cone C = Cny g < V consists of the positive-definite Hermitian matrices.

e The properly convex open set 2 = Qy g < P(V) is the projectivisation of C'.

o The group Aut(C) = GL(V') consists of the transformations preserving C'.

o The group G = Gy := Aut(Q) = Aut(C)/R*, where R* is seen as the group of homotheties
of GL(V), is the automorphism group of €.

e The group K < Aut(C) is the stabiliser of the identity matrix; note that the map K — G is
an embedding, and that K is a maximal compact subgroup of G. In particular it means that
Q) identifies as a G-space with the Riemannian symmetric space of the simple real Lie group G.

e Finally the group A consists of the diagonal matrices of size N with entries in R~ q; we see it
embedded in Aut(C), acting on V by the following formula: a- X = aXa forae Aand X e V.

Let us be more explicit about the case K = R. The group Aut(Cnyr) can be identified with
GLn(R)/{£1}, acting on Vyg by the formula g - X = ¢gX'g; the group Gy is identified with
PGLy (R); the group K is identified with O(N)/{+1}.

We come back to the general case. The spectral theorem (see [FK94, Th.V.2.5]) ensures that
for every X € V there exists k € K such that k- X is diagonal with real entries. This, using the
action of A, has two consequences: Aut(C) acts transitively on C, and can be written as the product
KAK = {kiaks : k1,ks € K,a € A}. Then, the quotient group G acts transitively on 2, and can be
written K(A/R~o)K — actually, the element of A/R* in the decomposition can be taken with non-
increasing entries on the diagonal, and this yields the Cartan decomposition of G. The Lie algebra
of G is sI(N,K) when K # O, and eg_z¢) if K = O (see [FK94, p.97]), therefore G is a real simple
Lie group, with finitely many connected components, and with finite center.

Since Q = G/K, a discrete subgroup I' = G acts cocompactly on € if and only if G/T" is compact,
i.e. T is a uniform lattice of G; uniform lattices exist by a theorem of Borel [Bor63, Th.C]. The
family of properly convex open sets Qn x are called the symmetric divisible convex sets. Zimmer
[Zim, Th. 1.4] recently proved that the higher-rank closed convex projective manifolds are exactly the
quotients of the form Qu x/I', where N > 3, the field K =R, C, H, or O (if N = 3), and " is a
uniform lattice of Gy k.
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7.1 The non-wandering set of G x R on T}

In this section we describe NW (T2, G x R) and prove that G acts transitively on each of its connected
components.

The boundary of 2 is the projectivisation of the cone of positive-semi-definite Hermitian matrices.
For 1 < i,j < N — 1, we denote by T'€; ; the set of unit tangent vectors v € T such that the
respective ranks of ¢_,,v and ¢v (meaning the rank of any representative in V') are ¢ and j. Note
that 7€ ; is non-empty if and only if i + j > N (see Proposition 7.1). The subsets T, ;, for
1<i,7< N and i+ j > N, are invariant under the automorphism group Aut(2) and the geodesic
flow (¢¢)er. They stratify TQ in the following way:

e T'Q is the disjoint union of the 7€, ;,

e the closure of T ; is the union of the 7'Qy; for 1 <k <iand 1 <[ <j,

in particular, TlQi,N_i is closed for 1 < i< N — 1,
e T'QxN_1n-1 is open and dense in T'Q.

When K = R we compute dim(71€; ;) = i(N — i) + w +j(N —j) + w -1

We denote by Geod(€);; the quotient T7€; j/(d¢)ter; observe that Geod(S) := T'Q/(dt)er
identifies with the set of pairs (z,y) in 0Q? such that Ker(z) n Ker(y) = . We are going to
prove that NW(Geod(Q2), G) is the union | J; ;< y_; Geod(£2); y—;. This exactly means, according to
Section 2.6, that NW(T"Q, G x R) is | J;<;<y_1 T, n—s. We choose a basepoint v; x—; € T n—i,
such that mv; y_;, ¢_oVi n—i and ¢, v; y—; are the projectivisations of, respectively, the identity
matrix, the orthogonal projection onto K x {0} and the orthogonal projection onto {0} x KN~=¢. We

set o
e IZ 0
AiN—i = {at = [ 0 et/Qlj] ite IR} c A,

where [}, is the identity matrix of size k, and we observe that for any time ¢ € R, the image a; - v; y—;
is exactly ¢.v; n—;. We denote by Gy the identity component of G and by K; y_; the stabilizer in
Gy of v; y—s; they are normalised by 4; n—; < Go.

Proposition 7.1. Consider N = 3, the algebra K =R, C, H, or O (if N = 3), the vector space V =
Vi x, the properly convex open set Q = Qn k, and the group G = Gy x, with identity component Gy.

(1) For1<i,j <N —1, the set T'Q; ; is non-empty if and only if i + j > N.

(2) For 1 <i< N —1, the group Go acts transitively on T'Q; n_;. If we identify T'Q; n—; with
Go/K; n—i, then the geodesic flow identifies with the action by right multiplication of A; N—; on
Go/Kin—i-

(8) The non-wandering set of G on Geod(f2) is

NW(Geod(2),G) = | ] Geod(Q)in—s.

I<i<N-—-1

Proof. (1) Suppose there exists v € T'Q; ;. Because Gy acts transitively on Q we can find g; € Gy
such that gy7v is the projectivisation of the identity matrix. Then by the spectral theorem
there exists an automorphism g, € K (i.e. fixing g;7v) such that Ker(gog16_oov) = {0} x KN4
since the space of (N — i)-dimensional right K-sub-modules of V' is connected, we can take go
in Gp. We note that the subspaces Ker(g291¢—«v) and Ker(gag1 doov) are orthogonal. (Indeed,
if T and T” are representatives in V of gag1¢_ v and gog1¢5v such that T + T” is the identity
matrix, and if z € Ker(T') while y € Ker(7”), then we compute

(w,y) = (a, Ty + T'y) = {x,Ty) = (Tx,y) = 0.)

This implies that ¢ + 7 > N.
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(2) Let 1 <4< N —1, let us show that there exists g € G such that ¢ - v is the basepoint v; y_; of
T'Q; n—i. We have already seen that there are g1, g2 € G such that mgagyv is the projectivisation
of the identity matrix, and Ker(g2g1¢_v) = {0} x K¥~%. Then Ker(g2g16,0v) = K’ x {0}, since
Ker(g291¢—v) and Ker(gag1¢oov) are orthogonal. Moreover gag1¢—oov and gag1¢ov are the
projectivisations of the orthogonal projections onto K? x {0} and {0} x KN~% (Indeed, consider
representatives T' and T of ¢_g2g1v and ¢ng2g1v in V such that T+ 7" is the identity matrix,
then 7" and T are the orthogonal projections onto K* x {0} and {0} x KN~%).

(3) The stabiliser of (¢—_ovi,N—i, PooVi,N—;) € Geod(); n_; contains A; y_;, therefore the stabilis-
ers of points in Geod({2); x—; are non-compact, hence  J, ;< _; Geod(Q); n—; is contained in
NW(Geod(f2),G). As a consequence, in order to prove (2), we only need to prove the other
inclusion.

By contradiction, we may assume the existence of sequences of positive semi-definite Hermitian
matrices (Sp)nen, (Tn)nen in V', of automorphisms (g, )neny in Aut(C) and of positive scalars
(An)nENa (ﬂn)neNa such that

e (Su)nens (MgnSn)nen, (Tn)nen, and (ngnTh)nen respectively converge to S, S, T, and
T,

e the rank of S and S’ is ¢, the rank of T and T” is 7, with 1 < 4,7 < N —1and i+ j > N,

o Ker(S) n Ker(T) = Ker(5") n Ker(T") = 0,

e [g,] € G leaves every compact subset.

Using Aut(C) = KAK and extracting, we may assume that g, = a, € A converge to a non-
invertible non-zero matrix a € A.

Since Ker(S) n Ker(T) = 0, up to exchanging S and T', we can assume that aSa # 0, and that
aSa = S’, which means a has rank greater or equal than i. Since i+j > N, necessarily aT'a # 0,
and we can assume that aT'a = T”. But now the kernel of a is contained in Ker(S")nKer(7") = 0,
this is a contradiction. O

7.2 The non-wandering set of (¢;),gr on T'M

Let T" be a lattice of G, not necessarily uniform. We set M = Q/T". For 1 <i,7 < N — 1, we denote
by T M; ; the quotient 7T7Q; ;/T.

Remark 7.2. The biproximal unit tangent bundle T M,;;, is empty. To see this, recall that the
attracting fixed point of a proximal automorphism of €2 is always an extremal point of €2, so the
proximal limit set of I' is contained in the closure of the set of extremal points of €.

Here, since 2 is symmetric, the set of extremal points is closed and consists of projectivisations of
rank-1 positive-semi-definite Hermitian matrices, so the set of straight geodesics between to extremal
points is Geod(f2); 1, which is empty, since N > 3.

In this section we use the Howe—Moore theorem to study the action of the geodesic flow on each
T'M; n—;, with 1 < i < N. Proposition 7.1 and Section 2.6 imply that the non-wandering sets
NW(Geod(2),T), NW(T*Q, T x R), and NW(T M, (¢;)scr) are respectively contained in the unions
Ur<icn—1 Geod(Q)i n—i, Urcien—1 T'Qinv—i and Uy;en—1 T'Min—i. We are now going to see
that we actually have equalities. Recall that a finite measure p preserved by a measurable flow
(¢¢)ter is called mizing if, for any two functions f, g € L%(u) with zero integral, we have

|7 (eondu — 0

Recall also that a continuous flow is topologically mixing on the support of a mixing invariant measure,
therefore Proposition 1.4 is an immediate consequence of Proposition 7.4 below, and of Zimmer’s
rigidity theorem [Zim, Th. 1.4].

Fact 7.3 ([HMT79], see e.g. [Zim84, Th.2.2.20]). Let G be a connected non-compact simple Lie group
with finite center, let m be a unitary representation of G in a separable Hilbert space, without any
non-zero G-invariant vector. Let x,y be two vectors in the Hilbert space. Then

(x, gy) =0

18



Cl(OO)

ca(0)

Figure 5: Proof of Crampon’s Lemma 5.2

Proposition 7.4. Consider N > 3, the algebra K = R, C, H, or O (if N = 3), the vector space
V = VN, the properly convex open set Q = Qnx, and the group G = Gy x. Take a lattice I' of G,
not necessarily uniform, and denote by M the quotient Q/T". Then for any 1 <i < N — 1, the (finite
and fully supported) Haar measure on T*M; n_; is mizing under the geodesic flow; as a consequence
the geodesic flow is topologically mizing on T'M; n—_;. Furthermore, NW(T M, (¢¢)ier) has exactly
N — 1 connected components, which are {TlMZ-’N,i ci=1,...,N—1}.

Proof. Up to replacing I by a finite-index subgroup, we can assume that I is contained in Gy. Since
I is a lattice, the Haar measure on I'\Gy is finite; the Howe—Moore theorem (Fact 7.3) classically
implies that it is mixing under the action of the non-compact subgroup A4; y—; < Go. According to
Proposition 7.1, it immediatly follows that, for each 1 < ¢ < N — 1, the induced Haar measure on
T'M; n—; = I'\G/K; n—; is mixing under the action of the geodesic flow. Since the Haar measure in
fully supported, the geodesic flow on T M; x_; is topologically mixing, and its non-wandering set is
T M; n—i.

O

A Proof of Crampon’s Lemma 5.2

It is enough to establish Lemma 5.2 when ¢;(0) = ¢2(0). Indeed, suppose the lemma true in this
case. Consider two straight geodesics ¢; and ¢y, each parametrised with constant speed. Let c3 be
the straight geodesic, parametrised with constant speed, such that ¢3(0) = ¢1(0) and ¢5(T) = co(T).
For t < T we have

da(cr(t), ca(t)) < da(er(t), e3(t)) + dales(t), ea(t))
(c1(T), e3(T)) + da(cs(0), c2(0))
) ca( )

T)) + dQ(Cl(O ,CQ(O)).

We now assume ¢1(0) = ¢2(0) (and that ¢; and ¢y are not constant, otherwise the proof is trivial).
We can then assume that  has dimension 2, and we can consider an affine chart in which both
projective lines (¢1(—0) @ c2(—00)) and (¢1(0) @ ca(0)) are vertical. Fix 0 < t < T. We draw
Figure 5 (left-hand side) which contains the following points:

e A and B are the intersection points of the line (ca(T) @ ¢1(T')) with 0€;

e C and D are the intersection points of the line (co(t) @ c1(t)) with 0Q;
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e (" and D’ are the intersection points of the line (c2(t) ® ¢1(t)) with the lines (¢1(0) @ A) and
(c1(0) @ B).

If we are in the case, as in Figure 5, where the lines (¢1(t) @ co(t)) and (c1(T) @ c2(T")) do not
intersect inside €2, then by convexity of Q the point C” lies between C' and ¢y (t) and D’ lies between
D and ¢4 (t). Therefore by definition of the cross-ratio we deduce that

do(ci(T), e2(T)) = dicr,pry(ea(t), e2(t))
= d(c,p)(c1(t), cr(t))
= do(ci(t), ca(t)).
It remains to prove that the lines (c1(¢) @ c2(¢)) and (¢1(T) @ c2(T")) do not cross inside Q (this

is the missing explanation in Crampon’s original proof). We draw Figure 5 (right-hand side) which
contains the points:

e A’ and B’ are the intersection points of the line (co(T) @ ¢1(T')) with the lines (¢1(00) @ ca(0))
and (¢1(—o0) @ ca(—00)).

e z and y are the intersection points of the line (ca(—00) @ c2(00)) with the lines (¢1(¢t) ® A’) and
(e1(t) ® BY).
e a is the intersection point of the line (¢1(—00) @ ¢1(00)) with the line (co(—00) @ A').

And we observe that it is enough to prove that cy(t) is on the segment [z, y]. In other words we want
to establish:

dofex(0).y)  _ da(es(0).ca(t)) _ ¢ da(e(0),ei(t) _  da(ea(0). )

da(c2(0),¢2(T)) ~ da(cz(0),c2(T)) T da(er(0),e1(T)) ~ dalcz(0),c2(T))

For example, if we want to establish the inequality on the right, we see by definition of the cross-ratio
that it is enough to prove:

do(c1(0),c1(t)) _ deaer (o0 (€1(0), c1(?))
do(c1(0),¢1(T)) ~ da,e; (o0 (€1(0),e1(T))”

It is a consequence of the following lemma. This, and a similar argument for the inequality on the
left, conclude the proof of Lemma 5.2.

Lemma A.1. Foralla<ad <x<y<z<beR,

d(a,b) (Qf, y) < d(a’,b) ('Ta y)
d(a,b) (IL’, Z) d(a’7b) (1’, Z)

Proof. Up to acting by a projective transformation we can assume that x =0, y = 1 and b = co. For
z > 1 we consider the function:
~ d@,w)(0,1)

a +— fz(a) = 7d(a’oo) (O, Z) .

on (—o0,0). We have to check that this function f, is non-decreasing. This follows immediatly from
the fact that, for every a < 0,

~log(1 + =1y

log(1+ =2)°

and from the computation of the derivative. O

f2(a)
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