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Abstract. We show that dynamical and counting results characteristic of

negatively curved Riemannian geometry, or more generally CAT(−1) or rank-
one CAT(0) spaces, also hold for rank-one properly convex projective manifolds

or orbifolds, equipped with their Hilbert metrics, admitting finite Sullivan

measures built from appropriate conformal densities. In particular, this includes
geometrically finite convex projective manifolds or orbifolds whose universal
covers are strictly convex with C1 boundary.

More specifically, with respect to the Sullivan measure, the Hilbert geodesic
flow is strongly mixing, and orbits and primitive closed geodesics equidistribute,
allowing us to asymptotically enumerate these objects.

In his influential thesis [Mar69], Margulis established counting results for nega-
tively curved closed manifolds, by means of ergodicity and equidistribution results
for the geodesic flows on these manifolds with respect to a suitable measure on the
unit tangent bundle, called the Bowen–Margulis measure.

In [Rob03], Roblin extended Margulis’ results to the setting of quotients, not
necessarily compact, of CAT(−1) spaces X by discrete subgroups of isometries
Γ ≤ Isom(X). More precisely, Roblin’s results include ergodicity of the horo-
spherical foliations, mixing of the geodesic flow, equidistribution of group orbits,
equidistribution of primitive closed geodesics, and, in the geometrically finite case,
asymptotic counting estimates.

One key set of tools that allowed Roblin to work in this generality are Patterson–
Sullivan densities, first developed in the context of real hyperbolic spaces by Patterson
and Sullivan [Pat76; Sul79]. These densities are families of measures on the boundary
at infinity. They are especially well-adapted to the geometry of the Γ-orbits in X, and
they can be used to define useful flow-invariant measures on the unit tangent bundle,
referred to here as Sullivan measures, which include the Bowen–Margulis measure.
Patterson–Sullivan theory also has other applications than to equidistribution and
counting problems, e.g. it can be used to compute Hausdorff dimensions of limit
sets; for more on this topic, see the recent historical notes in [DK19, p. 2].

The techniques used by Margulis, Patterson, Sullivan, Roblin and others were
later adapted to even more general settings. For instance, Link [Lin20] recently used
these to prove equidistribution results in rank-one quotients of Hadamard spaces.

Here we consider manifolds (and orbifolds) endowed with properly convex pro-
jective structures and associated Hilbert metrics (below, sometimes referred to as
“Hilbert geometries”). Properly convex Hilbert geometries, even strictly convex ones,
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are in general not CAT(−1) or even CAT(0) (see e.g. [Egl97, App. B]). Neverthe-
less, those of them which satisfy a rank-one condition, analogous to the rank-one
condition in Riemannian or CAT(0) geometry, do exhibit substantial similarities to
negatively curved Riemannian geometries. In particular, there is a good theory of
Patterson–Sullivan measures on these geometries, see [Cra11; Zhu20; Bra20; Bla21b].
They also come with geodesic flows whose dynamics exhibit features of negative
curvature; the study of the dynamics of these flows was initiated by Benoist [Ben04],
with further contributions from Crampon–Marquis [CM14b] and Bray [Bra20].

In [Bla20] and [Bla21b], the first author obtained good dynamical properties
for the Hilbert geodesic flow in the setting of rank-one properly convex Hilbert
geometries, including topological mixing and strong mixing of the geodesic flow with
respect to a Sullivan measure (constructed via a Patterson–Sullivan density).

In this paper, we show that we can use this mixing to obtain some of Roblin’s
equidistribution results in the setting of rank-one properly convex Hilbert geome-
tries. These further generalize analogous results obtained by the second author for
geometrically finite strictly convex Hilbert geometries in [Zhu20].

0.1. Main results. Our results will apply to properly convex domains Ω of the
real projective space P(Rn+1) = RPn and rank-one subgroups Γ ≤ Aut(Ω), where
Aut(Ω) ≤ PGL(Rn+1) is the subgroup of invertible projective transformations
preserving Ω.

A properly convex domain of P(Rn+1) is an open set which is contained in some
affine chart of P(Rn+1) and which is bounded and convex in that affine chart in the
usual Euclidean sense. Throughout this paper, we will write “domain” to
denote a properly convex domain.

A domain Ω comes with a Finsler metric dΩ, called the Hilbert metric (see §1.1
for the full definition). The intersection of any projective line of P(Rn+1) with Ω, if
non-empty, is a dΩ-geodesic, called a straight-line geodesic. This allows us to define
a Hilbert geodesic flow (gt)t∈R on the unit tangent bundle SΩ (it parametrises the
straight-line geodesics). The subgroup Aut(Ω) ≤ PGL(Rn+1) acts isometrically
with respect to dΩ, and commutes with the action of (gt). Thus, given a discrete
subgroup Γ ≤ Aut(Ω), the flow (gt) descends to a geodesic flow (gtΓ) on the unit
tangent bundle SΩ/Γ of the convex projective manifold or orbifold Ω/Γ.

Benoist [Ben04] studied the dynamics of (gtΓ) on SΩ/Γ in the case where Γ divides
(i.e. acts cocompactly on) Ω and Ω is strictly convex (i.e. ∂Ω contains no non-trivial
line segments). Crampon–Marquis [CM14b] studied (gtΓ) in cases where Ω is strictly
convex and Ω/Γ is not necessarily compact, and Bray [Bra20] studied the case where
Ω/Γ is compact three-dimensional, and Ω is not necessarily strictly convex.

In this paper, we study the dynamics of (gtΓ) when Γ ≤ Aut(Ω) is non-elementary
rank-one, i.e. Γ contains at least two elements γ1, γ2 ∈ Aut(Ω) each preserving
a different axis — a straight-line geodesic axis(γi) of Ω both of whose endpoints
are C1 and strongly extremal points in ∂Ω. We refer the reader to §1.2 for the
precise definitions of C1 and strongly extremal, and §2 for a longer description of
the rank-one condition, which is due to M. Islam [Isl19] and A. Zimmer [Zim20].

We can build a Sullivan measure on SΩ/Γ, associated to a Patterson–Sullivan
density on the boundary ∂Ω (i.e. a measure on ∂Ω satisfying good properties; see
§3.1 for the details) and prove that the Hilbert geodesic flow (gtΓ) on SΩ/Γ is mixing
with respect to this measure when it is finite.
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Mixing then gives us, via an argument of Babillot [Bab02a], equidistribution of
the unstable horospheres; the precise statement is a bit technical and we refer the
interested reader to Theorem 4.4 for this result. Moreover, we have equidistribution
of group orbits and of primitive closed geodesics:

Theorem A. Let Ω be a domain and Γ ≤ Aut(Ω) a non-elementary rank-one
discrete subgroup such that SΩ/Γ admits a finite Sullivan measure mΓ associated to
a Γ-equivariant conformal density (µx)x∈Ω of dimension δ = δ(Γ). Then

(i) (Equidistribution of group orbits, Theorem 5.1) for all x, y ∈ Ω,

δ‖mΓ‖e−δt
∑
γ∈Γ

dΩ(x,γy)≤t

Dγy ⊗Dγ−1x −−−−→
t→+∞

µx ⊗ µy

in C(Ω̄× Ω̄)∗, the weak*-dual to the space of continuous functions on Ω̄× Ω̄;
(ii) (Equidistribution of primitive closed geodesics, Theorem 6.1) writing Gr1Γ (`) to

denote the set of primitive closed rank-one geodesics (i.e. periodic (gtΓ)-orbits
lifting to axes of rank-one elements) of length at most `, we have

δ`e−δ`
∑

g∈Gr1Γ (`)

Dg −−−−→
`→+∞

mΓ

‖mΓ‖

in Cc(SΩ/Γ)∗, the weak*-dual to the space of compactly-supported continuous
functions on SΩ/Γ.

Here Dx denotes the Dirac mass at x with mass 1, and Dg denotes the Lebesgue
measure supported along g ∈ GΓ(`) with mass 1. Moreover, δ(Γ) is the critical
exponent of Γ with respect to the Hilbert metric dΩ, i.e. for any x ∈ Ω,

δ(Γ) = lim sup
r→∞

1

r
log #{γ ∈ Γ | dΩ(x, γx) ≤ r}.

Integrating a constant function against both sides of Theorem A.(i) yields the
following counting result for orbit points: for any x, y ∈ Ω,

(0.1) #{γ ∈ Γ | dΩ(x, γy) ≤ t} ∼
t→∞

‖µx‖ · ‖µy‖ · eδt

δ‖mΓ‖
.

In the case of a compact quotient, we may also integrate a constant function
against both sides in Theorem A.(ii) to obtain a counting result for primitive closed
geodesics.

More generally, we may obtain a similar counting result when Γ acts convex
cocompactly on Ω, i.e. the convex core of Ω/Γ is non-empty and compact. This
notion is due to Danciger–Guéritaud–Kassel [DGK17]; see §8 for more details.
Closed geodesics are always contained in the convex core, and if Γ is non-elementary
rank-one and convex cocompact, then it can be proved [Bla21b, §7.1] that mΓ is
concentrated on vectors based in the convex core (and hence finite). Thus integrating
a compactly-supported function which is constant on the convex core in (ii) yields:

Corollary B. Let Ω be a domain and Γ ≤ Aut(Ω) a convex cocompact, non-
elementary rank-one and discrete subgroup. Then

#Gr1Γ (`) ∼
`→∞

eδ`

δ`
.
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If Ω is strictly convex with C1 boundary (in which case all points of ∂Ω are C1

and strongly extremal), then Corollary B can be extended to the class of discrete
subgroups Γ ≤ Aut(Ω) acting geometrically finitely on ∂Ω, in the sense of Crampon–
Marquis [CM14a]; here the convex core of Ω/Γ is not necessarily compact. The
notion of geometric finiteness for strictly convex domains Ω with C1 boundary is
analogous to the negatively curved Riemannian notion of geometric finiteness; for
definitions and a fuller description we refer the reader to §1.5.

For this class of subgroups, we actually prove a stronger equidistribution result
for the closed geodesics.

Theorem C. Let Ω be a strictly convex domain with C1 boundary and Γ ≤ Aut(Ω)
a non-elementary discrete subgroup acting geometrically finitely on ∂Ω. Then

(iii) (Theorem 8.1) SΩ/Γ admits a finite Sullivan measure mΓ, associated to a
Γ-equivariant conformal density of dimension δ = δ(Γ);

(iv) (Theorem 8.2) writing GΓ(`) to denote the set of primitive closed geodesics of
length at most `,

δ`e−δ`
∑

g∈GΓ(`)

Dg −−−−→
`→+∞

mΓ

‖mΓ‖

in Cb(SΩ/Γ)∗, the dual to the space of bounded continuous functions on SΩ/Γ.

Theorem C was proved by the second author in [Zhu20] under the assumption that
the action of Γ is geometrically finite on Ω. This other notion of geometric finiteness
is stronger than geometric finiteness on ∂Ω, and is also due to Crampon–Marquis
(see Definition 1.10).

Integrating a constant function against both sides of Theorem C.(iv) yields the
following counting result (see Corollary 8.3):

#GΓ(`) ∼
`→∞

eδ`

δ`
.

In the case where Ω is strictly convex and Ω/Γ compact, Theorem A.(ii) (and
Theorem C) follows from the work of Benoist [Ben04] (see the end of §1.1 below)
together with general equidistribution and counting results for Anosov systems due
to Margulis [Mar69]. Weaker results of a similar flavor also follow from Bray’s work
[Bra20] if Ω/Γ is compact three-dimensional, from Islam’s work [Isl19] if Ω/Γ is
compact, and from the first author’s work [Bla21b] when Γ is convex cocompact.

The proofs of our equidistribution results follow the gist of Roblin’s proofs, making
heavy use of mixing, and of cones in the space and shadows on the boundary without
reference to any notion of angle, which is not well-defined in Roblin’s setting nor in
ours. As noted above, a key tool is the theory of Patterson–Sullivan densities and
associated Sullivan measures.

We remark that while Theorem C relies integrally on the geometric finiteness
condition, Theorem A applies to a larger class of discrete subgroups Γ ≤ Aut(Ω)
admitting finite Sullivan measures. Note that there exist geometrically infinite
hyperbolic surfaces with finite Bowen–Margulis measure (see [Pei03; ST21]), and
that there also exist geometrically finite Riemannian surfaces with non-constant
negative curvature whose Bowen–Margulis measure is infinite (see [DOP00, Th. C]).

0.2. Counting and Patterson–Sullivan theory in higher rank. As alluded to
above, Roblin’s results continue a long line of equidistribution and counting results
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in negative curvature. Here, before proceeding with our principal contents, we
briefly survey related results in the setting of discrete word-hyperbolic or relatively
hyperbolic subgroups of higher-rank semi-simple Lie groups. This includes the setting
of higher Teichmüller theory, which studies certain spaces of discrete representations
of surface groups.

Let G be a non-compact semi-simple real-algebraic group and P < G a proper
parabolic subgroup. One class of discrete word-hyperbolic subgroups of G for
which equidistribution and counting problems have been studied consists of those
which satisfy the P -Anosov condition defined in [Lab06] and [GW12]. If G =
PGL(Rn+1) and P is the stabilizer of a point in P(Rn+1), then P -Anosov groups
are called projective Anosov; these include the images of holonomy representations
of strictly convex projective structures on closed manifolds by work of Benoist
[Ben04]). Danciger–Guéritaud–Kassel proved in [DGK17] that a discrete subgroup
Γ < PGL(Rn+1) preserving some domain is projective Anosov if and only if it acts
convex cocompactly on some strictly convex domain with C1 boundary. A similar
result was proved independently by Zimmer [Zim17] if Γ is irreducible.

The equidistribution results of the present paper apply, further, to two disjoint
classes of groups which are not Anosov, and indeed not word-hyperbolic.

First, they apply to non-hyperbolic groups acting convex cocompactly on non-
strictly convex domains. There exist many such examples, see e.g. [Ben05; Mar10;
BDL18; CLM20; DGK17; DGKLM]; many of them are relatively hyperbolic.

Second, our results also apply to images of geometrically finite but not convex
cocompact holonomies of strictly convex projective structures. These are relatively
hyperbolic, and those which moreover satisfy the strong condition of geometric
finiteness (i.e. on the domain Ω, see Definition 1.10) satisfy a relative version of the
Anosov condition (see [KL18] or [Zhu19]). Conjecturally, groups satisfying the weaker
notion of geometric finiteness (i.e. on the boundary ∂Ω) also satisfy this relative
version of the Anosov condition, and furthermore any relatively Anosov group
preserving a properly convex domain may admit such a boundary geometrically
finite action. This would be a relative version of the relationship between the
projective Anosov condition and convex cocompactness in real projective geometry
established in [DGK17] and [Zim17], and would indicate that the results in this
paper are applicable to a large class of relatively Anosov groups.

In [Sam14; Sam15] (see also [Car20b, App. A]), Sambarino obtains equidistribution
and counting results similar to the results presented here for irreducible projective
Anosov groups, and for Zariski-dense Pmin-Anosov subgroups of any semi-simple
group G, where Pmin denotes the minimal parabolic (although he uses different
terminology). A particular case of his counting results is the following

Theorem ([Sam14, Th. C]). Let Γ < PGL(Rn+1) be Pmin-Anosov, Zariski-dense
and torsion-free. Then there exists h > 0 such that

#

{
[γ] ∈ [Γ] primitive | 1

2
log

λ1

λn+1
(γ) ≤ `

}
∼
`→∞

eh`

h`
,

where [Γ] is the set of conjugacy classes of Γ and λ1(γ) (resp. λn+1(γ)) is the
modulus of the largest (resp. smallest) eigenvalue of any lift of γ in SL±(Rn+1).

Note that 1
2 log λ1

λn+1
(γ) is the translation of length of γ in (Ω, dΩ).

If Ω ⊂ P(Rn+1) is a domain and Γ ⊂ Aut(Ω) is a Pmin-Anosov torsion-free
subgroup which is Zariski-dense in PGL(Rn+1), then the conclusion of Corollary B is
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a consequence of Sambarino’s result above. (Pmin-Anosov is stronger than projective
Anosov, and implies here convex cocompactness.) Sambarino also obtains counting
results for different notions of lengths than λ1

λn+1
(γ) in any semi-simple group G.

Moreover, Sambarino obtains orbit-counting results like (0.1) in the homogeneous
space PGL(Rn+1)/M where M consists of diagonal matrices with ±1 diagonal
entries, and in analogous homogeneous spaces for other semi-simple groups G.

Sambarino’s results are also proven using Patterson–Sullivan theory, in his case
in conjunction with the thermodynamical formalism. These methods have also
been extended to obtain Γ-orbit-counting results in other homogeneous spaces G/H,
where Γ ≤ G is Pmin-Anosov, and H ≤ G ranges over a wider class of subgroups:
[Car20a; Car20b] studied the case when G/H is a pseudo-Riemannian symmetric
space, and [ELO20] studied a more general case encompassing Sambarino’s work.

Organization. Section 1 collects the necessary background material on Hilbert
geometry and geometric finiteness in that setting.

Section 2 describes the rank-one condition and some of its consequences, including
a topological mixing property for the geodesic flow of non-elementary rank-one
convex projective manifold which generalises results of [Bla20] and is used to prove
the mixing property of the Bowen–Margulis measure in [Bla21b].

Section 3 describes the construction of Patterson–Sullivan densities and Sullivan
measures in our setting, and also a convex projective Hopf–Tsuji–Sullivan–Roblin
dichotomy, which implies that, when finite, the Sullivan measure gives full measure
to recurrent rank-one vectors.

Section 4 states the mixing result (Theorem 4.2) which is a crucial ingredient
in the following sections, and also contains the proof of the equidistribution of the
unstable horospheres (Theorem 4.4).

Sections 5 and 6 contain the proofs of Theorem A.(i) and (ii) respectively.
In Section 7 (see also Section 8.5) we use results from the previous sections to

prove counting results for rank-one conjugacy classes in the fundamental group Γ
(which are not in bijective correspondence with primitive closed geodesics if e.g. Γ
has torsion).

Finally, Section 8 contains the proofs of results specific to geometrically finite
subgroups acting on strictly convex domains with C1 boundary, as described in
Theorem C.
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1. Hilbert geometry

1.1. Properly convex Hilbert geometries. As in the introduction, a properly
convex domain (hereafter, “domain”) Ω ⊂ P(Rn+1) = RPn is an open set contained
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in some affine chart and bounded and convex in that affine chart, in the usual
Euclidean sense. The Hilbert metric dΩ on a domain Ω is defined as follows: given
x, y ∈ Ω, extend the straight line between them so that it meets ∂Ω in a and b (with

x between a, y). Then dΩ(x, y) = 1
2 log |ay||bx||ax||by| , where | · | denotes Euclidean distance

in the affine chart.

This can be shown to be a projectively invariant metric: dgΩ(gx, gy) = dΩ(x, y)
for all g ∈ PGL(Rn+1) and x, y ∈ Ω. In particular, dΩ is well-defined independent
of the choice of affine chart. Moreover, dΩ is a Finsler metric, i.e. it is induced by
an infinitesimal norm on the tangent bundle to Ω.

Straight (projective) lines are always geodesics for dΩ. When Ω is strictly
convex, i.e. ∂Ω contains no non-trivial line segments, these are the unique geodesics
for this metric.

For Ω a strictly convex domain equipped with its Hilbert metric dΩ, the Hilbert
geodesic flow (gt)t∈R on the unit tangent bundle SΩ is the unit (Hilbert) speed
flow along the geodesics. We may similarly define the Hilbert geodesic flow (gt)t∈R
on the unit tangent bundle SΩ when Ω is properly convex, not necessarily strictly
convex, as the unit speed flow along the straight-line Hilbert geodesics.

We remark that there is a natural involution ι on SΩ such that gtιv = ιg−tv for
all v ∈ SΩ and t ∈ R and ι does not change the foot-point of v.

When Ω is an ellipsoid, equipping Ω with its Hilbert metric gives us the projective
model of real hyperbolic space. More generally, the geometry of strictly convex
domains Ω ⊂ P(Rn+1) equipped with the Hilbert metric shares many features with
negatively curved Riemannian geometries, even beyond what may be expected given
δ-hyperbolicity, although they are not in general Riemannian or even CAT(−1).
For instance, nearest-point projection from a point z to a Hilbert geodesic l ⊂ Ω
is well-defined on the nose, not just coarsely as in the case of general δ-hyperbolic
space. This follows from the strict convexity of metric balls [Bus55, (18.6)] and
hence of the distance functions d(z, ·) : l→ R for z ∈ Ω.

On the other hand, we can start with Ω a simplex, and the resulting Hilbert
geometry is isometric to Rn endowed with a norm equivalent (though not equal) to the
Euclidean norm. More generally, domains Ω which are not strictly convex, equipped
with their Hilbert metrics, have geometric and dynamical features qualitatively
similar to those of non-positively curved Riemannian geometries. The metric balls in
this case remain convex [Bus55, (18.6)], as do the distance functions d(z, ·) : l→ R
for any fixed z ∈ Ω. While it is no longer in general true that the functions
t 7→ dΩ(l1(t), l2(t)) are convex for any two straight-line Hilbert geodesics l1 and l2,
Crampon observed the following useful property; a complete proof can be found in
[Bla20, App. A].
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Lemma 1.1 ([Cra09, Lem. 8.3]). Let Ω ⊂ P(Rn+1) be a domain, and let l1 and
l2 be two straight-line Hilbert geodesics of Ω parametrized with constant speed (not
necessarily the same speed). Then for all 0 ≤ t ≤ T ,

dΩ(l1(t), l2(t)) ≤ dΩ(l1(0), l2(0)) + dΩ(l1(T ), l2(T )).

Given a properly convex domain Ω, we write Aut(Ω) to denote the group of
invertible projective automorphisms preserving Ω, i.e.

Aut(Ω) := {γ ∈ PGL(Rn+1) = Aut(P(Rn+1)) | γ(Ω) ⊂ Ω}.

Projective automorphisms γ ∈ Aut(Ω) are isometries of Ω equipped with the Hilbert
metric dΩ; in fact, Aut(Ω) coincides with the isometry group of (Ω, dΩ), except in
the case of certain properly convex domains coming from symmetric spaces where
Aut(Ω) has index two inside the isometry group: see e.g. [Mar14, Prop. 10.2] for
the strictly convex case, or [Wal18] for the more general case.

The Hilbert metric dΩ is proper (closed balls are compact), and this implies
that any discrete subgroup Γ ≤ Aut(Ω) acts properly discontinuously on Ω, with
quotient Ω/Γ an orbifold (for Γ torsion-free, a manifold) equipped with a convex
projective structure, i.e. an atlas of charts to P(Rn+1) which locally give the orbifold
the geometry of projective space. The Hilbert metric dΩ descends to a metric on
the quotient Ω/Γ, and the Hilbert geodesic flow (gt), since it commutes with the
action of Γ, descends to a flow (gtΓ) on the quotient SΩ/Γ.

As for real hyperbolic manifolds, there is a partial correspondence between
periodic orbits of (gtΓ) on SΩ/Γ and conjugacy classes of Γ, and the length of the
orbit corresponding to (the conjugacy class of) γ ∈ PGL(Rn+1) can be obtained as
the algebraic quantity

(1.1) `(γ) =
1

2
log

λ1

λn+1
(γ̃),

where γ̃ ∈ GL(Rn+1) is any lift of γ, and λ1(γ̃), . . . , λn+1(γ̃) are the moduli of the
(complex) eigenvalues of γ̃ (with multiplicity), ordered so that λ1(γ̃) ≥ · · · ≥ λn+1(γ̃).

We say Ω is divisible if there is some discrete subgroup Γ ≤ Aut(Ω) whose action
on Ω is cocompact. The quotients Ω/Γ in this case are most closely analogous to
closed hyperbolic manifolds, and share many of their good geometric and dynamical
properties. In particular, in [Ben04] Benoist shows that if Ω ⊂ P(Rn+1) is a properly
convex domain which is divisible by Γ, then the following are equivalent:

i) Ω is strictly convex,
ii) ∂Ω is C1,

iii) Γ is δ-hyperbolic,
iv) (Ω, dΩ) is δ-hyperbolic,
v) the geodesic flow on the quotient SΩ/Γ is Anosov.

Recall the Anosov condition for a flow roughly means that the tangent bundle splits
into the flow direction, and the stable and unstable distributions, such that vectors
in the stable (resp. unstable) distribution are uniformly exponentially contracted
by the flow in forwards (resp. backwards) time.

1.2. Boundary points of properly convex domains. Let Ω ⊂ P(Rn+1) be a
domain. Here we introduce notions and terminology which are useful for dealing
more carefully with the boundary ∂Ω when Ω is not strictly convex and so ∂Ω may
contain line segments. Most of this discussion is taken from [Bla21b, §2].
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The relative interior of a subset K ⊂ P(Rn+1) is its topological interior with
respect to the projective subspace it spans. For x ∈ Ω, the open face FΩ(x) of x
in Ω consists of the points y ∈ Ω such that the segment [x y] is contained in the
relative interior of a segment contained in Ω.

A point x ∈ ∂Ω is said to be extremal (resp. strongly extremal) if FΩ(x) = x
(resp. [x, y]∩Ω 6= ∅ for any y ∈ Ωr {x}); Ω is strictly convex if all the points in the
boundary are extremal (and hence strongly extremal).

A supporting hyperplane of Ω at ξ ∈ ∂Ω is a hyperplane which contains ξ but
does not intersect Ω. Note that there always exists such a hyperplane, by proper
convexity. The point ξ is said to be a C1 point of ∂Ω if there is only one supporting
hyperplane of Ω at ξ.

We denote by ∂sseΩ the set of C1 and strongly extremal points in ∂Ω. Observe
that when Ω is strictly convex with C1 boundary, ∂sseΩ = ∂Ω.

Given ξ, η ∈ ∂Ω, we define dΩ(ξ, η) := dF (ξ, η) if ξ and η are in a common open
face F , and dΩ(ξ, η) =∞ otherwise. This extends the distance dΩ(x, y) = dΩ(x, y)
for x, y ∈ Ω, in the sense that

lim inf
x→ξ,y→η

dΩ(x, y) ≥ dΩ(ξ, η).

If Ω is strictly convex with C1 boundary, then dΩ(ξ, η) = ∞ for all ξ ∈ ∂Ω and

η ∈ Ω r {ξ}. Below we will occasionally write BΩ(x,R), for x ∈ Ω and R > 0, to
denote a closed ball of radius R and center in the dΩ-metric, i.e. the closed ball
centered at x in the face of x equipped with its own Hilbert metric.

We also define the simplicial distance dspl(ξ, η) between two points of ∂Ω as
the minimal number of points ξ1, . . . , ξn ∈ ∂Ω such that ξn = η and

[ξ ξ1] ∪ [ξ1ξ2] ∪ · · · ∪ [ξn−1ξn] ⊂ ∂Ω,

and we set dspl(ξ, ξ) = 0.
Finally, Geod∞Ω denotes the space of pairs of points (ξ, η) ∈ (∂Ω)2 for which

there exists a bi-infinite straight-line geodesic in Ω with endpoints ξ and η. When
Ω is strictly convex with C1 boundary, Geod∞ Ω = ∂2Ω, the set of pairs of distinct
points of ∂Ω.

1.3. Horofunctions, horoboundaries and horospheres. Next, we introduce
some notions associated to the Hilbert geometry which will naturally arise in the
construction of the Patterson–Sullivan densities which yield our ergodicity and
equidistribution results: the horofunction boundary and associated objects in this
subsection, and the Gromov product in the next.

Let Ω ⊂ P(Rn+1) be a domain. Given z ∈ Ω, the horofunction βz : Ω×Ω→ R
is defined by

βz(x, y) := dΩ(x, z)− dΩ(y, z).

We remark that this uses the sign convention adopted in [Rob03], which is a little
more intuitive geometrically and helpful for working with shadows (see §3.2); this is
opposite to the general sign convention which appears e.g. in [BH99].

Let C(Ω) be the space of continuous (R-valued) functions on Ω, equipped with the
topology of uniform convergence. If we fix a basepoint o ∈ Ω, we may check that the
map β : Ω→ C(Ω) given by z 7→ βz(·, o) is an embedding (see [Wal14, Prop. 2.2]);
moreover, it is easy to check that βz(·, o) : Ω → R is a 1-Lipschitz map for any
z ∈ Ω, using the triangle inequality. By the Arzelà–Ascoli theorem, the image β(Ω)
is relatively compact, and the horofunction compactification Ωh of Ω is defined as
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β(Ω), and the horoboundary ∂hΩ is given by β(Ω) r β(Ω), where the closure is
taken in C(Ω). Points in the horoboundary will also be called horofunctions. This
construction was first introduced by Gromov [Gro81, §1.2].

Horofunctions βξ ∈ Ωh satisfy a cocycle condition

βξ(x, y) + βξ(y, z) = βξ(x, z)

for all x, y, z ∈ Ω, and are also Aut(Ω)-invariant, in the sense that

βγξ(γx, γy) = βξ(x, y)

for all γ ∈ Aut(Ω) and x, y ∈ Ω. Below, we will sometimes also call a horoboundary
point βξ the “horofunction based at ξ ∈ ∂hΩ”.

The horoball (resp. horosphere) based (or centered) at βξ ∈ ∂hΩ (or, we will
also write to lighten the notation, based or centered at ξ) and passing through x ∈ Ω
is the set

Hξ(x) = {y ∈ Ω | βξ(x, y) > 0}
(resp. ∂Hξ(x) = {y ∈ Ω | βξ(x, y) = 0}) .

Note that horospheres (resp. horoballs) are limits of spheres (resp. balls) for the
Hausdorff topology; this implies that horoballs are convex, since Hilbert balls
are convex [Bus55, (18.12)], and their boundaries are the horospheres, which are
homeomorphic to Rn−1.

By a theorem of Walsh [Wal08, Th. 1.3], the identity map on Ω extends to a
continuous surjective map πh : Ωh → Ω.

If we are given ξ ∈ ∂hΩ and one horosphere centered at ξ, then we can geometri-
cally describe all horospheres centered at ξ in terms of the given horosphere and the
projection πh(ξ) ∈ ∂Ω. More precisely, for all x, y ∈ Ω with y ∈ [xπh(ξ)], it is an
immediate consequence of Proposition 1.2 below that the map sending x′ ∈ ∂Hξ(x)
to the unique point y′ ∈ [xπh(ξ)) at distance dΩ(x, y) from x′ is a homeomorphism
from ∂Hξ(x) onto ∂Hξ(y); thus the horospheres centered at ξ foliate the domain Ω.

Proposition 1.2 ([Bla21b, Lem. 4.3]). Let Ω be a domain and ξ ∈ Ωh, then
βξ(x, y) = dΩ(x, y) for all x, y ∈ Ω such that y ∈ [xπh(ξ)].

Proof. If βξ(x, y) < dΩ(x, y), then we can find (z, y′) ∈ Ω2 close enough to (ξ, y)
such that βz(x, y

′) < dΩ(x, y′) and y′ ∈ [x z], which contradicts the fact that [x z]
is a geodesic segment for the Hilbert metric. Hence βξ(x, y) is bounded below by
dΩ(x, y); the other bound follows from the triangle inequality. �

We also make the following elementary observation:

Lemma 1.3. Given a domain Ω ⊂ P(Rn+1) and two distinct points ξ, η ∈ Ωh, if
x ∈ [πh(ξ)πh(η)] ∩ Ω then Hξ(x) and Hη(x) are disjoint.

Proof. Suppose there is y ∈ Hξ(x) ∩Hη(x). Then we can find (ξ′, x′, η′) ∈ Ω3 close
enough to (ξ, x, η) such that βξ′(x

′, y) > 0 and βη′(x
′, y) > 0 and x′ ∈ [ξ′η′]. This

leads to the following contradiction:

dΩ(ξ′, η′) = dΩ(ξ′, x′) + dΩ(x′, η′)

= βξ′(x
′, y) + dΩ(ξ′, y) + βη′(x

′, y) + dΩ(y, η′)

> dΩ(ξ′, η′). �

It follows from this that
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Proposition 1.4 (cf. [CM14a, Fig 7.4]). Given Ω a domain, ξ, η ∈ ∂Ω two distinct
boundary points, and two horoballs Hξ and Hη, centered at ξ and η respectively,
Hξ ∩Hη 6= ∅ if and only if (ξ η) ∩Hξ ∩Hη 6= ∅.

Proof. It is clear that Hξ ∩Hη 6= ∅ if (ξ η) ∩Hξ ∩Hη 6= ∅.
Conversely, suppose Hξ ∩Hη ∩ (ξ η) = ∅. Since (ξη) is connected, it contains a

point x outside of Hξ ∪Hη. Now Hξ ⊂ Hξ(x) and Hη ⊂ Hη(x) by definition of the
horoballs, and Hξ(x) ∩Hη(x) is empty by the previous lemma. �

As noted by Crampon–Marquis [CM14a] and Bray [Bra20], regularity properties
of the projective boundary ∂Ω have repercussions for the geometry and regularity
of the horospheres. In particular any ξ ∈ ∂Ω has exactly one preimage in ∂hΩ if
and only if it is a C1 point of ∂Ω [Bra20, Lem. 3.2]. We will from now on abuse
notation by identifying any C1 point of the projective boundary with its preimage
in the horoboundary.

If ξ is C1, the horospheres centered at ξ coincide with the algebraic horospheres
defined by Cooper–Long–Tillmann [CLT15, §3]. More precisely, for η ∈ ∂Ω r Tξ∂Ω
and x ∈ (ξ η), the horosphere ∂Hξ(x) is the image of the map that sends ζ ∈ ∂Ω r
Tξ∂Ω to the point of intersection [ξ ζ] ∩ span (x, Tξ∂Ω ∩ span(η, ζ)), and moreover
this map is the restriction of a projective transformation that fixes every point of
Tξ∂Ω.

As a consequence, if Ω is strictly convex with C1 boundary, then the horoboundary
identifies with ∂Ω, all horofunctions are C1, and all horoballs are strictly convex
with C1 boundary.

1.4. Gromov products. Given Ω ⊂ P(Rn+1) a domain and x, y, z ∈ Ω, the
Gromov product 〈y, z〉x is defined as

〈y, z〉x =
1

2
[dΩ(x, y) + dΩ(x, z)− dΩ(y, z)].

Roughly speaking, it measures how much the sides of a geodesic triangle overlap.
For instance, given a tree T , we have 〈y, z〉x = 0 for any x, y, z ∈ T ; more generally,
the smaller the Gromov product, the thinner the geodesic triangle is. Indeed, there
is a characterization of δ-hyperbolicity in terms of the Gromov product.

We note the following transformation properties that are useful for proving the
invariance of our Sullivan measures below: for all φ ∈ Aut(Ω),

〈φξ, φη〉φx = 〈ξ, η〉x = 〈ξ, η〉x′ +
1

2
(βξ(x, x

′) + βη(x, x′))

We remark also that βξ(x, u) + βη(x, u) = 2〈ξ, η〉x, for any u ∈ (ξ η).
As in CAT(−1) geometry (though not always for general Gromov hyperbolic

spaces, see [BH99, §III.H.3.15]), the Gromov product may be extended continuously
to an appropriate set of pairs of points of the boundary, here π−1

h (Geod∞ Ω), where
Geod∞Ω = {(x, y) ∈ ∂Ω2 | [x y] ∩ Ω 6= ∅} is as at the end of §1.2; we also set
Geod Ω = {(x, y) ∈ Ω2 | [x y] ∩ Ω 6= ∅}.
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Proposition 1.5 ([Bla21b, Prop. 3.1]). The map (ξ, η, x) 7→ 〈ξ, η〉x defined on Ω3

extends continuously to π−1
h (Geod Ω)× Ω, and the extension continues to satisfy

x ∈ (ξη) =⇒ 〈ξ, η〉x = 0

2〈ξ, η〉x = 2〈ξ, η〉y + βξ(x, y) + βη(x, y)

|〈ξ, η〉x − 〈ξ, η〉y| ≤ dΩ(x, y)

Proof. Let A := {(ξ, η, x, y) ∈ π−1
h (Geod Ω) × Ω2 | y ∈ [ξ η]}. The projection

(ξ, η, x, y) 7→ (ξ, η, x) from A to π−1
h (Geod Ω)×Ω is continuous, surjective and open.

Therefore, it is enough to prove that the function (ξ, η, x, y) 7→ 〈ξ, η〉x defined on
A ∩ Ω4 extends continuously to A. This is an immediate consequence of the fact
that 〈ξ, η〉x = βξ(x, y) + βη(x, y) for any (ξ, η, x, y) ∈ A ∩ Ω4. �

It is immediate from the first and third properties in the above proposition that

Corollary 1.6. If (ξ, η, x) ∈ π−1
h (Geod Ω)× Ω, then 〈ξ, η〉x ≤ dΩ(x, (ξ η)).

If Ω is strictly convex with C1 boundary, then ∂hΩ is identified with ∂Ω, and
we see that the Gromov product is well defined on the set ∂2Ω of pairs of distinct
points of ∂Ω.

1.5. Convex cocompactness and geometric finiteness. Let Ω be a domain
and Γ ≤ Aut(Ω) be a discrete subgroup. The full orbital limit set, introduced in
[DGK17], is

(1.2) Λorb
Γ :=

⋃
x∈Ω

Γ · xr Γ · x.

The convex core of the quotient M = Ω/Γ is the projection of the convex hull
CH(Λorb

Γ ) in Ω of the full orbital limit set. The idea is that the convex core contains
all the dynamics of the geodesic flow: for instance, one can check that any non-
wandering geodesic lies in it, see [Bla20, Obs. 2.12]. We will obtain our strongest
results when the convex core is geometrically well-understood, more precisely when
it is compact (i.e. the group is convex cocompact). If Ω is strictly convex with C1

boundary, these results extend to the case where the convex core can be decomposed
into a compact part and finitely many cusp-like parts (i.e. the group is geometrically
finite).

Definition 1.7 ([DGK17, Def. 1.11]). Γ ≤ Aut(Ω) is convex cocompact if the
quotient of the convex core CH(Λorb

Γ )/Γ is compact and non-empty.

Equivalently, one can characterize the subgroups Γ ≤ Aut(Ω) acting convex
cocompactly on Ω in terms of its action on the boundary:

Definition 1.8. ξ ∈ Λorb
Γ is a conical limit point if there exist a sequence of

elements (γn) ⊂ Γ and x ∈ Ω such that (γnx)n tends to ξ and supn dΩ(γnx, [x ξ)) <
∞. We denote by Λcon

Γ the set of all conical limit points in Λorb
Γ .

Proposition 1.9 ([DGK17, Cor. 4.9 & Lem. 4.19]). Γ ≤ Aut(Ω) is convex cocompact
if and only if Λorb

Γ = Λcon
Γ and this set is closed.

Now further suppose, for the rest of this section, that Ω is strictly convex with
C1 boundary. In this case, the orbital limit set Λorb

Γ of any discrete subgroup

Γ ≤ Aut(Ω) is equal to Γ · xr Γ · x for any x ∈ Ω, and is closed; therefore Γ acts
convex cocompactly on Ω if and only if every point of Λorb

Γ is conical.
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Moreover, the above definition of conical limit points is equivalent, in this case,
to a characterization purely in terms of the action Γ y ∂Ω [CM14a, Lem. 5.10].

Geometric finiteness can be seen as a weakening of convex cocompactness, where
we allow non-conical limit points, which must however satisfy good properties that
allow for some control on the non-compact parts of the convex core. This notion
arose first in the setting of Kleinian groups, and has subsequently been extended
to higher dimensions and the more general setting of pinched negative curvature
in [Bow95]; the group-theoretic notion of relative hyperbolicity, see e.g. [Bow12],
may be seen as an extension of geometric finiteness to a more general δ-hyperbolic
setting.

Before we state the definition of geometrically finite subgroups of Aut(Ω), we
recall the classification of elements and of elementary discrete subgroups of Aut(Ω)
due to Crampon–Marquis [CM14a, Th. 3.3 & §3.5] (keep in mind that we have
assumed Ω is strictly convex with C1 boundary). Any element γ ∈ Aut(Ω) is

• either elliptic: it fixes a point of Ω;
• or parabolic: it fixes a unique point of Ω, which is in the boundary ∂Ω;
• or hyperbolic: it fixes exactly two points of Ω, which are in the boundary.

Any discrete subgroup Γ ≤ Aut(Ω) is

• either elliptic: #Λorb
Γ = 0, and Γ is finite, fixes a point of Ω, and consists

of elliptic elements;
• or parabolic: #Λorb

Γ = 1, and Γ fixes a unique point of ∂Ω, consists of ellip-
tic and (at least one) parabolic elements, and acts properly discontinuously
on ∂Ω r Λorb

Γ (see Section 8.1 for more properties of these groups);
• or elementary hyperbolic: #Λorb

Γ = 2, and Γ consists of elliptic and (at
least one) hyperbolic elements, and any hyperbolic element generates a
finite-index subgroup;
• or non-elementary: #Λorb

Γ =∞, and Γ acts minimally on Λorb
Γ (which is

perfect), contains a non-abelian free subgroup made of hyperbolic elements,
and fixes no point of Ω.

Definition 1.10. Let Ω be a strictly convex domain with C1 boundary and Γ be a
discrete subgroup of Aut(Ω).
ξ ∈ Λorb

Γ is a bounded parabolic point if the stabilizer StabΓ(ξ) is parabolic
and acts cocompactly on Λorb

Γ r {ξ}. We say Γ acts geometrically finitely on
∂Ω if every point in Λorb

Γ is either conical or bounded parabolic.
ξ ∈ Λorb

Γ is a uniformly bounded parabolic point if StabΓ(ξ) is parabolic

and acts cocompactly on the set of lines through ξ which meet CH(Λorb
Γ \ {ξ}), the

closure of the convex hull of Λorb
Γ \ {ξ}. We say Γ acts geometrically finitely on

Ω if every point in Λorb
Γ is either conical or uniformly bounded parabolic.

Observe that if Γ acts geometrically finitely on Ω, then it also acts geometrically
finitely on ∂Ω; the converse is not true in general (see [CM14a, §10.3]). We work in
the present article with groups Γ that act geometrically finitely on ∂Ω.

Crampon–Marquis gave a more concrete description [CM14a, Th. 1.2] of groups
that acts geometrically finitely on Ω, in terms of geometrical and topological
properties of the quotient Ω/Γ. For example, they proved that Γ acts geometrically
finitely on Ω if and only if CH(Λorb

Γ )/Γ admits a decomposition into a compact part
and finitely many disjoint non-compact but well-understood parts (see the standard
parabolic regions in [CM14a, Def. 7.22]), and this property implies that Ω/Γ is tame
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(i.e. the interior of a compact orbifold with boundary), that Γ is hyperbolic relative
to the maximal parabolic subgroups, and that Γ is finitely presented.

We will establish and use partial results of a similar nature for groups acting
geometrically finitely on the boundary ∂Ω. More specifically, we will decompose
into compact and non-compact parts a subset of CH(Λorb

Γ )/Γ, which is the quotient
by Γ of the union of lines between points in Λorb

Γ (see Propositions 8.10 and 8.12).
If Γ acts geometrically finitely on Ω, and in addition the parabolic ends satisfy an

additional technical condition (“asymptotic hyperbolicity”; this condition is always
satisfied, for instance, when the quotient Ω/Γ has finite volume), then the Hilbert
geodesic flow on SΩ/Γ is uniformly hyperbolic on the non-wandering set NW [CM14b,
Th. 5.2], generalizing Benoist’s result that the Hilbert geodesic flow on a compact
convex projective manifold is Anosov.

There is also an analogue of Benoist’s characterization of strict convexity in
the finite-volume setting, due to Cooper–Long–Tillmann [CLT15, Th. 0.15], which
states that for M = Ω/Γ a properly convex manifold of finite volume which is the
interior of a compact manifold N with boundary and where the holonomy of each
component of ∂N is parabolic, the following are equivalent:

i) Ω is strictly convex,
ii) ∂Ω is C1,

iii) π1N is hyperbolic relative to the subgroups of the boundary components.

We remark that there is a fair amount of overlap between the geometric results in
[CM14a] and [CLT15], although the presentation of their results differs somewhat;
the reader may, in large part, consult either or both of these sources to taste.

2. The rank-one condition

Our ergodicity and equidistribution results will require at least a little negative
curvature, which may be provided by Ω being strictly convex with C1 boundary, or
more generally by the rank-one condition.

In Riemannian geometry, or more generally CAT(0) geometry, the rank-one
condition describes, in the first instance, geodesics in “negatively curved directions”,
or isometries which act like hyperbolic isometries in negatively curved geometry. We
then say that any discrete group of isometries containing a rank-one isometry is rank-
one, because — very loosely speaking — these isometries tend to display north-south
dynamics that propagate their rank-one behavior throughout the subgroup.

In the setting of non-positively curved Riemannian manifolds, the higher-rank
rigidity theorem of Ballmann–Spatzier tells us that any irreducible compact Rie-
mannian manifold of non-positive curvature either is rank-one (i.e. its isometry
group is rank-one), or is a higher-rank locally symmetric space.

Recently, A. Zimmer established a similar result [Zim20, Th. 1.4] for closed convex
projective manifolds, using a definition of the rank-one condition in Hilbert geometry
first defined and studied by M. Islam:

Definition 2.1 ([Isl19]). Given a domain Ω ⊂ P(Rn+1), an infinite-order element
γ ∈ Aut(Ω) is rank-one if it preserves a straight-line geodesic of Ω both of whose
endpoints are C1 and strongly extremal points of ∂Ω.

A discrete subgroup Γ ≤ Aut(Ω), and the quotient Ω/Γ are said to be rank-one
if Γ contains a rank-one element.
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Note that rank-one elements are biproximal [Isl19, Prop. 6.3], and that any
conjugate of a rank-one element remains rank-one.

A rank-one group Γ, and the quotient Ω/Γ, are said to be elementary if and only
if Γ is virtually isomorphic to Z, and non-elementary otherwise. This definition
is compatible with the one from the previous section.

Definition 2.2. An element γ ∈ PGL(Rn+1) is proximal if it has an attracting
fixed point in P(Rn+1), which is denoted by γ+. If γ and its inverse are both
proximal, then we say that γ is biproximal, and write γ− := (γ−1)+.

Given a subgroup Γ ≤ PGL(Rn+1), the proximal limit set Λprox
Γ is the closure

of the set of all attracting fixed points of proximal elements in Γ.
Below, we will write ΛΓ to refer to Λprox

Γ , and label other limit sets, where we
refer to them, with their respective superscripts (Λorb

Γ , Λcon
Γ , etc.)

One can show that ΛΓ ⊂ Λorb
Γ , and moreover that if Ω is strictly convex with C1

boundary and Γ is discrete, then the proximal limit set as defined here agrees with
the full orbital limit set as defined in (1.2) unless Γ is a parabolic group.

The proximal limit set can be used, as in [Bla20, Def. 1.1] to define a natural
subset of the unit tangent bundle SM of a convex projective manifold M given by
the set of vectors v ∈ SM such that ṽ+ and ṽ− belong to ΛΓ for any lift ṽ ∈ SΩ:
this is called the biproximal unit tangent bundle and denoted by SMbip.

When Ω is strictly convex with C1 boundary, SMbip is the non-wandering set.
Using Zimmer’s higher-rank rigidity result [Zim20, Th. 1.4], the first author proved
[Bla21c] that if M is rank-one and compact, then SMbip = SM . We will see
(Corollary 2.10) that the geodesic flow is topologically mixing on the biproximal
unit tangent bundle of non-elementary rank-one convex projective manifolds.

2.1. Abundance of rank-one geodesics. Fixed points of rank-one elements be-
have well for our purposes; the next two results are precise instances of this general
statement:

Lemma 2.3. Let Ω ⊂ P(Rn+1) be a domain and Γ a discrete subgroup of Aut(Ω).
Let γ1, γ2 ∈ Γ be rank-one elements. If γ+

1 = γ+
2 , then γ−1 = γ−2 , and in fact γ1 and

γ2 must have a common power.

Proof. Let li := (γ−i γ
+
i ) be the axes for γi (i = 1, 2). These are well-defined and

unique ([Isl19, Def 6.2 and Prop 6.3]), and γ±1
i translates along li towards γ±i .

Fix xi ∈ li such that βγ+
1

(x1, x2) = 0. Given n ≥ 1, write mn :=
⌊
ndΩ(x1,γ1x1)
dΩ(x2,γ2x2)

⌋
.

Fix ε > 0. Since γki xi = γ+
i as k →∞, and γ+

1 = γ+
2 , thus by [Bla20, Prop. 5.1], we

have
dΩ(x1, γ

−n
1 γmn2 x2) = dΩ(γn1 x1, γ

mn
2 x2) < ε

for all large enough n.
Since the action of Γ on Ω is properly discontinuous, this implies for all sufficiently

large n we have γ−n1 γmn2 = id. Fix any one such N , and define h := γN1 = γmN2 .
Then dΩ(h−px1, h

−px2) = dΩ(x1, x2) <∞ for all p ∈ Z>0. Since h−pxi → γ−i as
p→∞, and the γ−i are strongly extremal points, this implies that γ−1 = γ−2 . �

The following proposition is a generalisation of [CM14b, Cor. 6.3]:

Proposition 2.4. Let Ω ⊂ P(Rn+1) be a domain and Γ a non-elementary rank-one
discrete subgroup of Aut(Ω). Then ΛΓ is infinite and is the smallest Γ-invariant
closed subset of Ω, and {(γ−, γ+) | γ ∈ Γ rank-one} is dense in ΛΓ × ΛΓ.
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Proof. We start by showing #ΛΓ ≥ 3. Fix a rank-one element γ0 ∈ Γ. Suppose,
on the contrary, that #ΛΓ ≤ 2, so that ΛΓ = {γ−0 , γ

+
0 }. Any infinite-order element

γ ∈ Γ preserves the line (γ−0 γ
+
0 ) and is hence rank-one, and by Lemma 2.3 it has

a common power with γ0. This implies, by discreteness of Γ, that γ0 generates a
finite-index subgroup of Γ, contradicting our assumption that Γ is non-elementary.

Therefore Γ contains a proximal element γ with γ+ /∈ {γ−0 , γ
+
0 }. We denote by

γ−∗ the repelling hyperplane of γ, which does not intersect Ω. If γ+
0 ∈ γ−∗ , then

γ−∗ ∩ ∂Ω = {γ+
0 } since γ+

0 is strongly extremal, so g is rank-one [Bla20, Lem. 3.2]
and γ+ = γ+

0 by Lemma 2.3, which is a contradiction. Hence γ+
0 6∈ γ−∗ , and similarly

γ−0 6∈ γ−∗ . The points {γnγ+
0 }n are pairwise distinct, and hence ΛΓ is infinite.

Next we show that ΛΓ is the smallest Γ-invariant closed subset of Ω, by showing
that ΛΓ ⊂ Γ · ξ for any ξ ∈ Ω. Given any such ξ, the sequence (γn0 ξ)n≥0 converges
to some η ∈ {γ−0 , γ

+
0 } (with η = γ−0 if and only if ξ = γ−0 ). The point γ+, being

the limit of (γnη)n, belongs to Γ · ξ. Hence, γ±0 , being the limit of (γ±n0 γ+)n≥0,

belongs to Γ · ξ. For any proximal element h ∈ Γ, there exists ζ ∈ {γ+
0 , γ

−
0 }r h−∗ ,

and h+ = limn→∞ hnζ is in Γ · ξ. Thus ΛΓ ⊂ Γ · ξ, as desired.
Finally, let us show that {(γ−, γ+) : γ ∈ Γ rank-one} is dense in ΛΓ × ΛΓ. Fix

two non-empty open subsets U, V ⊂ ΛΓ. Note that ΛΓ is infinite and minimal under
the action of Γ, and using minimality we can find two (rank-one) conjugates γ1 and
γ2 of γ0 such that γ+

1 ∈ U and γ+
2 ∈ V r {γ+

1 , γ
−
1 }. Consider hn = γn1 γ

−n
2 for n ≥ 0;

we will show that, for n large enough, hn is rank-one with h+
n ∈ U and h−n ∈ V .

By Lemma 2.3, the four points γ−1 , γ+
1 , γ−2 and γ+

2 are distinct. Consider lifts γ̃1

and γ̃2 ∈ GL(Rn+1), and numbers λ1, λ2 > 0 such that for i = 1, 2:

γ̃ni −−−−→
n→∞

π+
i and λni γ̃

−n
i −−−−→

n→∞
π−i ,

where π±i is the projector on γ±i along γ∓i∗. For each n ≥ 0 set h̃n := γ̃n1 γ̃
−n
2 . Then

λn2 h̃n −−−−→
n→∞

π+
1 π
−
2 and λn1 h̃

−1
n −−−−→

n→∞
π+

2 π
−
1 .

Since γ−2 6= γ−1 = kerπ+
1 ∩ Ω, the endomorphism π+

1 π
−
2 is non-zero, and so is its

square, since γ+
1 6= γ+

2 = kerπ−2 ∩ ∂Ω. Thus, π+
1 π
−
2 is, up to a multiplicative scalar,

the rank-one projector on γ+
1 along γ+

2∗. Similarly, π+
2 π
−
1 is the rank-one projector

on γ+
2 along γ+

1∗. As a consequence, gn is biproximal for n large enough, and (h+
n )n

(resp. (h−n )n) converges to γ+
1 (resp. γ+

2 ). It remains to show that hn is rank-one
for n large enough, but this is a direct consequence of [Bla20, Prop. 3.4.1]. �

2.2. Irreducibility for rank-one groups. Let V = Rn+1. Recall that a subgroup
Γ ≤ PGL(V ) is said to be irreducible if it does not preserve any proper subspace
of P(V ), and strongly irreducible if any finite-index subgroup of Γ is irreducible.
Not all non-elementary rank-one discrete groups of automorphisms of properly
convex domains are strongly irreducible: consider for example a cocompact lattice Γ
of SO(1, 2) < SO(1, 3) < SL(4,R). In this case, Γ preserves the span of ΛΓ, which is
a proper subspace of P(R4). Crampon and Marquis thought that this was basically
the only obstruction (see [CM14b, Lem. 2.4]). This is not exactly true, though not
far from the truth: the other possible obstruction is that the dual proximal limit
set Λ∗Γ may not span P(V ∗), as explained in the next proposition.

We recall that, given a domain Ω ⊂ P(V ), the dual domain Ω∗ consists of
all points in P(V ∗) corresponding to hyperplanes of P(V ) which do not intersect
Ω̄. Given a subgroup Γ ≤ Aut(Ω), we write Γ∗ to denote the image of Γ under
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the natural identification between PGL(V ) and PGL(V ∗) sending γ ∈ PGL(V ) to
(f 7→ f ◦ γ−1) ∈ PGL(V ∗), and Λ∗Γ to denote the proximal limit set of Γ∗ in ∂Ω∗.

Proposition 2.5. Suppose we have Ω ⊂ P(V ) a domain, and Γ a non-elementary
rank-one discrete subgroup of Aut(Ω).

The following are equivalent

(i) ΛΓ spans P(V ) and Λ∗Γ spans P(V ∗).
(ii) Γ is irreducible.

(iii) Γ is strongly irreducible.

Proof. Strong irreducibility implies a fortiori irreducibility, i.e. (iii) implies (ii).
(ii) implies (i) because ΛΓ (resp. Λ∗Γ) is Γ-invariant (resp. Γ∗-invariant), and Γ is

irreducible if and only if Γ∗ is irreducible.
The limit set of any finite-index subgroup of Γ is ΛΓ, and its dual limit set is Λ∗Γ.

Thus, to establish that (i) implies (iii), it is enough to prove that (i) implies (ii).
Suppose we have a Γ-invariant subspace W ⊂ V . If P(W ) contains a point of ΛΓ,

then it contains them all by Proposition 2.4, and W = V since ΛΓ spans V . Let us
assume the contrary. Then for any proximal element γ ∈ Γ, we have γ+ 6⊂W , and
one can check that this implies that W ⊂ γ−∗ (because W is γ-invariant). In other
words, W ⊂

⋂
H∈Λ∗Γ

H, and this right-hand side is trivial since Λ∗Γ spans V ∗. �

2.3. Restricting and projecting properly convex domains. As observed by
Crampon–Marquis, Proposition 2.5 has interesting consequences: in many cases,
given a non-elementary rank-one group Γ, one can, by “restricting to the spans of
ΛΓ and Λ∗Γ”, project Γ onto a strongly irreducible rank-one group Γ′, and then try
to pull back nice properties of Γ′ to nice properties of Γ. Let us formalize this idea.

Let V = Rn+1, and consider two subspaces V1, V2 ⊂ V . Given a subgroup
G ≤ GL(V ) (or PGL(V )), we denote by GV1 (resp. GV1,V2) the set of elements of
G preserving P(V1) (resp. P(V1) and P(V2)); we naturally identify V1/(V1 ∩ V2)
(resp. (V/V2)∗) as a subspace of V/V2 (resp. V ∗). To produce the natural map
from GL(V )V1,V2 to GL(V1/(V1 ∩ V2)) (resp. from GL(V )V2 to GL((V/V2)∗)) one
can equivalently go through GL(V1)V1∩V2 or GL(V/V2)V1/(V1∩V2) (resp. GL(V/V2)
or GL(V ∗)(V/V2)∗).

We set, for any γ ∈ PGL(V ) and any lift γ̃ ∈ GL(V ),

(2.1) κ(γ) = ‖γ̃‖ · ‖γ̃−1‖,
where ‖ · ‖ is a fixed norm on End(V).

Consider a properly convex domain Ω ⊂ P(V ). By an abuse of notation, we write
Ω ∩ V1 to denote Ω ∩ P(V1) and Ω/V2 to denote the projection of Ω in P(V/V2).
Assume that Ω ∩ V1 6= ∅, that Ω ∩ V2 = ∅ (i.e. Ω∗ ∩ (V/V2)∗ 6= ∅), and that
(Ω ∩ V1)/(V1 ∩ V2) = (Ω/V2) ∩ (V1/(V1 ∩ V2)). Observe that (Ω/V2)∗ is naturally
identified with Ω∗ ∩ (V/V2)∗. Denote by ρ the natural map from Aut(Ω)V1,V2 to
Aut((Ω ∩ V1)/(V1 ∩ V2)). We will find a constant C > 0 such that

(2.2) C−1κ(γ) ≤ κ(ρ(γ)) ≤ Cκ(γ)

for any γ ∈ Aut(Ω)V1,V2 ; in particular, this will imply that the map ρ is proper.
Using a duality argument, one checks without difficulty that it suffices to find C > 0
such that C−1κ(γ) ≤ κ(ρ1(γ)) ≤ Cκ(γ) for any γ ∈ Aut(Ω)V1 , where ρ1 is the
natural map from Aut(Ω)V1 to Aut(Ω ∩ V1). This is an immediate consequence of
the following
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Proposition 2.6 ([DGK17, Prop. 10.1]). For any pointed domain x ∈ Ω ⊂ P(V ),
there exists C > 0 such that C−1κ(γ) ≤ e2dΩ(x,γx) ≤ Cκ(γ) for any γ ∈ Aut(Ω).

Another useful formula will be the following: for any γ ∈ Aut(Ω)V1,V2 ,

(2.3) `(ρ(γ)) = `(γ),

where `(γ) is defined as in (1.1). To see this, it suffices, using again a duality
argument, to fix γ ∈ Aut(Ω)V1 with `(γ) > 0 and check that `(ρ1(γ)) = `(γ). It is
obvious that `(ρ1(γ)) ≤ `(γ). To establish the converse inequality, we only need to
show that γ± ∩ V1 are non-empty, where γ+ (resp. γ−) is the sum of all generalized
eigenspaces associated to eigenvalues with maximal (resp. minimal) moduli. Observe
that any accumulation point of (γ±nx)n, where x ∈ Ω ∩ V1, belongs to γ± ∩P(V1).

Let us apply the previous observations to a non-elementary rank-one discrete
subgroup Γ ≤ Aut(Ω). Then V1 := span(ΛΓ) intersects Ω, and V ′2 := span(Λ∗Γ)
intersects Ω∗ 6= ∅. Furthermore, (Ω∩V1)/(V1∩V2) is equal to (Ω/V2)∩(V1/(V1∩V2)),
where V2 = (V ∗/V ′2)∗ is the intersection of all hyperplanes in Λ∗Γ. Thus, we obtain
by Proposition 2.5, and (2.2) and (2.3), the following

Lemma 2.7. If Γ is a non-elementary rank-one discrete group preserving a domain
Ω (i.e. Ω ⊂ P(V ) is a domain and Γ ≤ Aut(Ω)), then Γ projects via a morphism ρ
with finite kernel onto a strongly irreducible rank-one discrete group preserving a
domain Ω′, with `(ρ(γ)) = `(γ) for any γ ∈ Γ.

2.4. The length spectrum of a non-elementary rank-one group. Given a
rank-one convex projective manifold M = Ω/Γ, the length spectrum of Γ is
the collection {`(γ) | γ ∈ Γ}. It contains the lengths of all closed rank-one Hilbert
geodesics in SM = SΩ/Γ, which are given by the set of `(γ) as γ varies over the
rank-one elements of Γ. The following result says that the length spectrum of a
non-elementary rank-one group is non-arithmetic.

Lemma 2.8. Let Ω ⊂ P(Rn+1) be a domain and S ⊂ Aut(Ω) a sub-semigroup
that generates a non-elementary rank-one discrete subgroup Γ. Then {`(s) | s ∈ S}
generates a dense subgroup of R.

Proof. By Lemma 2.7, the length spectrum of S is the length spectrum of a
semi-group S′ that generates a strongly irreducible group and preserves a do-
main. Therefore the lemma follows immediately from [Ben00, Rem. p. 165] and
[Bla20, Cor. 4.4]. �

By the work of Dal’bo [Dal99; Dal00] (on negatively curved Riemannian mani-
folds), we know that non-arithmeticity of the length spectrum is closely related to
mixing of the geodesic flow and will be useful for establishing this property.

We can further deduce, from the next lemma, that the the local length spectrum
of a non-elementary rank-one group is also non-arithmetic.

Lemma 2.9. Let Ω ⊂ P(Rn+1) be a domain and Γ ≤ Aut(Ω) a non-elementary
rank-one discrete subgroup. Then the set of lengths of rank-one periodic orbits
through any non-empty open subset U ⊂ SMbip generates a dense subgroup of R.

Proof. Let Ũ ⊂ SΩ be the preimage of U . By Proposition 2.4, there exists a

rank-one element γ1 ∈ Γ whose axis encounters Ũ . Up to reducing U , we may

assume that dspl(φ−∞v, φ∞v) ≥ 3 for any v ∈ Ũ (see §1.2 for the definition of dspl).
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Since Γ is non-elementary, we can find a rank-one element γ2 ∈ Γ such that γ+
1 , γ−1 ,

γ+
2 and γ−2 are four distinct points.

By [Bla20, Lem. 4.7], we can find N ≥ 1 such that γN1 and γN2 generate a non-
elementary, rank-one free subgroup Γ′ ⊂ Γ whose elements are biproximal, and such

that the axis of every element of the form γN1 γ
N
i1
· · · γNinγ

N
1 encounters Ũ , where

n ≥ 0 and 1 ≤ i1, . . . , in ≤ 2.
Let Γ+ ⊂ Γ′ be the sub-semigroup generated by γN1 and γN1 γ

N
2 γ

N
1 ; it generates

Γ′ as a group. By Lemma 2.8, the additive group generated by {`(γ) | γ ∈ Γ+}, is
dense in R. But by construction, each non-trivial element γ of Γ+ is biproximal with

axis through Ũ ; furthermore dspl(γ
−, γ+) ≥ 3, and this implies that γ is rank-one by

[Bla21b, Fact 2.14]. By definition the axis of each non-trivial element of Γ+ projects
on a rank-one periodic geodesic through U , whose length is `(γ). �

Corollary 2.10. Let Ω ⊂ P(Rn+1) be a domain and Γ ≤ Aut(Ω) a non-elementary
rank-one discrete subgroup. Then the geodesic flow on SMbip is topologically mixing.

Proof. It is easy to establish, when Γ is rank-one and non-elementary, that ΛΓ is
not contained in span(γ+, γ\) ∪ span(γ−, γ\) for any biproximal γ ∈ Γ, where γ\

denotes the unique γ-invariant complement of span(γ+, γ−). The desired corollary
is then a consequence of [Bla20, Prop. 6.1], Lemma 2.9, and this aforementioned
fact. �

3. Patterson–Sullivan and (Bowen–Margulis–)Sullivan measures

3.1. Conformal densities and Patterson–Sullivan measures. Fix a domain
Ω and let Γ ≤ Aut(Ω) be a discrete subgroup.

A conformal density of dimension δ ≥ 0 (or a δ-conformal dimension, for
short) on Ω is a function µ which associates to each x ∈ Ω a positive finite measure
µx on ∂hΩ, satisfying the property that µx′ is absolutely continuous with respect to
µx for all x, x′ ∈ X, with Radon-Nikodym derivative given by

dµx′

dµx
(ξ) = e−δβξ(x

′,x)

where βξ denotes the horofunction based at ξ ∈ ∂hΩ. A density µ is said to be
Γ-equivariant if γ∗µx = µγx for all γ ∈ Γ and all x ∈ Ω.

The (convex projective) critical exponent δΓ (also written δ(Γ) or just δ if the
context is clear) of Γ is the critical exponent of the Poincaré series

∑
γ∈Γ e

−s·dΩ(x,γx),
i.e. the infimum of all s for which the series converges. It is straightforward to
check, using the triangle inequality, that the convergence of the Poincaré series, and
hence the critical exponent, is well-defined independent of the choice of basepoint
x; in fact, the convergence of the Poincaré series and δΓ do not depend on Ω (see
Proposition 2.6). The series may or may not converge at s = δ(Γ): if it does not,
we say that Γ is divergent.

One can construct a Γ-equivariant conformal density of dimension δ(Γ) as follows:
fix a basepoint o ∈ Γ. Given s < δ(Γ), define

µx,s :=
1∑

γ∈Γ e
−s·dΩ(γ·o,x)

∑
γ∈Γ

e−s·dΩ(γ·o,x)Dγ·o
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if Γ is divergent, where we use Dx to denote the Dirac delta measure supported at
x; if Γ is not divergent, then set

µx,s :=
1∑

γ∈Γ j(dΩ(γ · o, x))e−s·dΩ(γ·o,x)

∑
γ∈Γ

j(dΩ(γ · o, x))e−s·dΩ(γ·o,x)Dγ·o

where j : R+ → R+ is a suitable auxiliary function of subexponential growth (i.e.
t 7→ j(t)e−ηt is bounded for any η > 0), more precisely such that the modified
Poincaré series

∑
γ∈Γ j(dΩ(γ · o, x))e−s·dΩ(γ·o,x) diverges at s = δΓ (for full details,

see [Pat76] or [Sul79].)
Consider a weak* accumulation point µx of µx,s when s tends to δ(Γ). Following

the arguments in [Pat76], one may check that this yields a Γ-equivariant conformal
density of dimension δ(Γ).

This construction was originally due to Patterson [Pat76] and Sullivan [Sul79], and
these conformal densities are commonly known as Patterson–Sullivan densities, and
the individual measures µx (for each fixed x ∈ Ω) as Patterson–Sullivan measures.

We can consider our conformal densities to be families of measures on ∂Ω by
taking the push-forward by πh of a conformal density on ∂hΩ; such conformal
densities, measuring subsets of ∂Ω, remain Γ-quasi-invariant. As noted above,
when Ω has C1 boundary, ∂Ω ∼= ∂hΩ and the push-forward conformal densities are
identified with the conformal densities on ∂hΩ.

3.2. Shadows. One geometric way of understanding Patterson–Sullivan measures is
provided by the Sullivan shadow lemma, which estimates the measure of a particular
family of sets in terms of Hilbert distances.

Given x, y ∈ Ω and r > 0, define the shadow

Or(x, y) := {ξ ∈ ∂Ω | (x ξ) ∩BΩ(y, r) 6= ∅}
where (x ξ) denotes the geodesic ray starting from x in the direction of ξ. We
may also take x ∈ ∂Ω, in which case (x ξ) should be interpreted as the bi-infinite
geodesic with endpoints x and ξ. The terminology comes from viewing Or(x, y) as
the shadow cast by the ball BΩ(y, r) on the boundary ∂Ω, when we have a light
source located at the point x.

We work here with closed shadows, contrary to the common convention (adopted
for instance in Roblin [Rob03, §1B]) of working with open shadows (cast by open
balls): this makes almost no difference in practice since open shadows are contained
in closed shadows, and contain closed shadows of any smaller radius.

The shadow lemma states, informally, that the sizes of suitably chosen shadows
may be approximated in terms of distances between orbit points. Before presenting
the shadow lemma, we note a lemma used in its proof which will also be useful later
on; it is an immediate consequence of the definition of shadows and Proposition 1.2.

Lemma 3.1. For all ξ ∈ π−1
h (Or(x, y)), we have

dΩ(x, y)− 2r < βξ(x, y) ≤ dΩ(x, y).

Lemma 3.2 (Sullivan shadow lemma, [Zhu20, Lem. 8] or [Bla21b, Lem. 4.2]). Let
Ω be a domain, Γ ≤ Aut(Ω) a non-elementary rank-one discrete subgroup, µ be a
Γ-equivariant conformal density of dimension δ on Ω, and x ∈ Ω. Then, for all
large enough r > 0, there exists C > 0 such that for all γ ∈ Γ,

1

C
e−δ·dΩ(x,γx) ≤ µx (Or(x, γx)) ≤ Ce−δ·dΩ(x,γx).



Ergodicity and equidistribution in Hilbert geometry 21

3.3. The Hopf parametrization. Let Ω ⊂ P(Rn+1) be a domain with basepoint
o ∈ Ω. The Hopf parametrization based at o is the continuous surjective map

Hopfo : π−1
h (Geod∞ Ω)× R −→ SΩ,

that sends (ξ, η, t) ∈ π−1
h (Geod∞ Ω)×R to the vector Hopfo(ξ, η, t) which is tangent

to the geodesic (πh(ξ) πh(η)) and such that βη(o, πHopfo(ξ, η, t)) = t.
When the context is clear, we will simply write Hopf instead of Hopfo. Chang-

ing the base-point for x ∈ Ω yields the following formula: for any (ξ, η, t) ∈
π−1
h (Geod∞ Ω)× R,

Hopfx(ξ, η, t) = Hopfo(ξ, η, t+ βη(o, x)).

We can lift to π−1
h (Geod∞Ω)× R the three actions on the unit tangent bundle

SΩ given by the geodesic flow, Aut(Ω) and the flip involution ι, so that the Hopf
parametrization is equivariant; observe that, apart from the action of the geodesic
flow, these actions depend on the base-point o: given (ξ, η, t) ∈ π−1

h (Geod∞ Ω)× R
and s ∈ R and γ ∈ Aut(Ω) these lifts may be written as

gs(ξ, η, t) = (ξ, η, t+ s),

γ · (ξ, η, t) = (γξ, γη, t+ βη(γ−1o, o)),

ι(ξ, η, t) = (η, ξ, 〈ξ, η〉o − t).

If Ω is strictly convex with C1 boundary, then π−1
h (Geod∞Ω) and Geod∞Ω

are both identified with ∂2Ω (the set of pairs of distinct points of ∂Ω). The Hopf
parametrization is then a homeomorphism from ∂2Ω× R to SΩ.

3.4. (Bowen–Margulis–)Sullivan measures. Let Ω be a domain, Γ ≤ Aut(Ω)
a discrete subgroup and µ a Γ-equivariant conformal density of dimension δ ≥ 0 on
∂hΩ. We first define a measure mh on π−1

h (Geod∞Ω)× R, by using the following
formula of Sullivan [Sul79, Prop. 11]:

dmh(ξ, η, t) = e2δ〈ξ,η〉xdµx(ξ) dµx(η) dt,

where dt denotes (the infinitesimal form of) the Lebesgue measure on the R factor;
x ∈ SΩ is an arbitrary base-point, and one can check that mh is independent of
the choice of x. Under the assumption that Γ is rank-one and non-elementary, one
can verify that mh defines a non-zero Radon measure (since the function that sends
(ξ, η, x) ∈ π−1

h (Geod∞ Ω)× Ω to 〈ξ, η〉x is continuous).
One may also check that mh is invariant under the actions of the geodesic flow, Γ

and the flip involution. As a consequence, it induces a measure mh
Γ on the quotient

π−1
h (Geod∞Ω)× R/Γ. It also induces a (gt,Γ, ι)-invariant measure m on the unit

tangent bundle SΩ by simply pushing forward via the Hopf parametrization. Finally,
this induces a (gt, ι)-invariant measure mΓ on SΩ/Γ. We will call these measures
(m and mΓ) Sullivan measures associated to our conformal density µ.

For cocompact irreducible Γ, this measure coincides with the Bowen–Margulis
measure, which is the unique measure of maximal entropy of a topologically mixing
Anosov flow [Bla21b, Th. 1.3]. We remark that Roblin [Rob03] refers to mΓ as a
Bowen–Margulis–Sullivan measure, and also that these mΓ are examples of what
Paulin–Pollicott–Schapira [PPS15] refer to mΓ as Gibbs measures (with zero Gibbs
potential, and the Busemann cocycle).
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If Ω is strictly convex with C1 boundary, then we may identify mh with m and
mh

Γ with mΓ since we have identified π−1
h (Geod∞ Ω) with ∂2Ω, and since the Hopf

parametrization is a homeomorphism.

3.5. The Hopf–Tsuji–Sullivan–Roblin dichotomy. In this section we state a
convex projective version of the celebrated Hopf–Tsuji–Sullivan–Roblin (HTSR)
dichotomy, which establishes equivalences between several different ways of charac-
terizing a subgroup of automorphisms as “small” or “large” in terms of conformal
measures, associated Sullivan measures, and ergodicity of the geodesic flow. It
will be useful for us as a criterion for ergodicity of the Sullivan measure mΓ on
SΩ/Γ under the action of the geodesic flow (gtΓ), and as a tool for showing that our
Patterson–Sullivan measures concentrate on the C1 and strongly extremal points of
∂Ω.

A proof of the divergent case of the HTSR dichotomy (Theorem 3.3(2) below),
in the case where Ω is strictly convex with C1 boundary and Γ acts geometrically
finitely on Ω, can also be found in [Zhu20, Prop. 12, 14, 16 and Cor. 13].

Theorem 3.3 ([Bla21b, Th. 1.6]). Let Ω be a domain, and Γ ≤ Aut(Ω) be a non-
elementary rank-one discrete subgroup. Let o ∈ Ω and δ ≥ 0, let (µx)x∈Ω be a
Γ-equivariant conformal density of dimension δ on Ω, and m and mΓ be the induced
Sullivan measures on SΩ and SM = SΩ/Γ. Then there are two possibilities:

(1) either
∑
γ∈Γ e

−δ·dΩ(o,γo) <∞, and then µo(Λ
con
Γ ) = 0 and the geodesic flow

on (SM,mΓ) is dissipative and non-ergodic;
(2) or

∑
γ∈Γ e

−δ·dΩ(o,γo) =∞, in which case δ = δΓ, Γ is divergent, and

• (µx) is the only δΓ-conformal density on Ω (up to scaling);
• µo is non-atomic, µo(∂sseΩ ∩ ΛΓ ∩ Λcon

Γ ) = 1 and supp(m) = SMbip;
• the geodesic flow on (SM,mΓ) is conservative and ergodic;

Recall that a measurable flow (φt)t is conservative if {t | φt(A) ∩ A 6= ∅} is
unbounded for any set A with positive measure, and dissipative if one can cover
the ambient space by countably many wandering measurable sets (i.e. sets A such
that {t | φt(A) ∩ A 6= ∅} is bounded). The only facts about conservativity and
dissipativity that we need in this paper are that the two notions are mutually
exclusive, and the Poincaré recurrence theorem, which states that any flow that
preserves a finite measure is conservative. Below, our assumptions will always
contain or imply that the Sullivan measure mΓ is finite, and hence that we are in
the divergent case of the HTSR dichotomy.

Within the divergent case of the dichotomy, the most important part for us is
the fact that the Patterson–Sullivan measures are concentrated on ∂sseΩ. Since, by
[Bra20, Lem. 3.2], ∂sseΩ can be identified with its preimage in the horoboundary ∂hΩ,
an immediate consequence is that from the point of view of the Patterson–Sullivan
(resp. Sullivan) measures we deal with here, πh (resp. the Hopf parametrization) is
a bijection, and the dynamics of the geodesic flow on

(
(∂hΩ

2 × R)/Γ,mh
Γ

)
and on

(SΩ/Γ,mΓ) are the same.

4. Mixing of the geodesic flow

In this section, we state the measure-theoretic mixing result which will be a
crucial ingredient in the equidistribution results which follow.
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Definition 4.1. Given a finite-measure Borel space (X, ν), a flow (gt)t∈R on X is
(strongly) mixing with respect to ν if for all ϕ,ψ ∈ L2(X, ν),∫

X

(ϕ ◦ gt) · ψ dν −−−−→
t→±∞

1

‖ν‖

∫
X

ϕdν ·
∫
X

ψ dν,

or equivalently if for all Borel subsets A,B ⊂ X, we have

ν(A ∩ gtB) −−−−→
t→±∞

ν(A)ν(B)

‖ν‖
.

Mixing is a characteristic property of geodesic flows in negative curvature; one
may view measure-theoretic mixing as a quantitative version of topological mixing.

Measure-theoretic mixing results have been proven in a wide range of settings
where Sullivan measures may be defined, for instance for geometrically finite sub-
groups in constant negative curvature (see e.g. [Rud82]), or in great generality for
all discrete groups of CAT(−1) isometries with quotient admitting a finite Sullivan
measure by Roblin [Rob03, Th. 3.1]. (See also [Sam15, §3] for related results about
the mixing of Weyl chamber flows.)

Theorem 4.2 ([Zhu20, Th. 18] or [Bla21b, Th. 1.6]). Let Ω ⊂ P(Rn+1) be a domain
and Γ ≤ Aut(Ω) be a non-elementary rank-one discrete group such that SΩ/Γ admits
a finite Sullivan measure mΓ associated to a Γ-equivariant δΓ-conformal density.

Then the Hilbert geodesic flow (gtΓ)t∈R on SΩ/Γ is mixing with respect to mΓ.

Remark 4.3. For the sake of clarity moving forward, we formulate the previous
result here in terms of functions on the universal cover. Let X̂ be either SΩ or
π−1
h (Geod∞ Ω)×R, and let m and mΓ denote the Sullivan measures on X̂ and X̂/Γ

respectively. For any measurable m-integrable (resp. non-negative) function φ on

X̂, we denote by
∫

Γ
φ the measurable mΓ-integrable (resp. non-negative) function

on X = X̂/Γ defined by ∫
Γ

φ(v) :=
∑
γ∈Γ

φ(γṽ)

for any v ∈ X, where ṽ ∈ X̂ is any lift of v. By the definition of mΓ, we have∫
X̂

φdm =

∫
X

(∫
Γ

φ

)
dmΓ.

If φ, ψ are integrable functions on X̂ such that |φ|
∫

Γ
|φ| and |ψ|

∫
Γ
|ψ| are integrable

on X̂ (e.g. if φ and ψ are bounded with compact support), then it is easy to see that(∫
Γ

φ

)(∫
Γ

ψ

)
=
∑
γ∈Γ

∫
Γ

(φ · (ψ ◦ γ)).

Therefore Theorem 4.2 can be reformulated as∑
γ∈Γ

∫
X̂

φ · (ψ ◦ γ ◦ gt) dm −−−→
t→∞

1

‖mΓ‖

∫
X̂

φdm ·
∫
X̂

ψ dm.

In particular, if A,B ⊂ X̂ are relatively compact Borel subsets, then∑
γ∈Γ

m(A ∩ gtγB) −−−→
t→∞

m(A)m(B)

‖mΓ‖
.
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Also, if ψ̃ is a Γ-invariant function on X̂ that lifts a square-integrable function ψ
on X = X̂/Γ and φ is an integrable function on X̂ such that |φ|

∫
Γ
|φ| is integrable,

then ∫
X̂

φ · (ψ̃ ◦ gt) dm −−−→
t→∞

1

‖mΓ‖

∫
X̂

φdm ·
∫
X

ψ dmΓ.

Theorem 4.2 was proven in the case of Ω strictly convex with C1 boundary by
the second author [Zhu20, Th. 18], and then in the more general properly convex
rank-one case by the first author [Bla21b, Th. 1.6].

Very briefly, the proofs adapt arguments from [Bab02a] and [Ric17], using cross-
ratios, length spectrums, and topological mixing. More specifically, it proceeds by
showing that if mΓ is not mixing, then the length spectrum is contained in a discrete
subgroup of R; since this is not the case, m must in fact be mixing.

We refer the interested reader to [Bla21b] or [Zhu20] for the details. We remark
that the proof in the case, when Γ is not strongly irreducible reduces to the strongly
irreducible case using the results in §2.3 and §2.4 here.

Equidistribution of unstable horospheres. We further remark that Babillot
obtains equidistribution of unstable horospheres as a consequence of mixing of the
geodesic flow [Bab02a, Th. 3], and we can do likewise here.

Unstable horospheres of SΩ are sets of vectors tangent to geodesics backwards-
asymptotic to a common point ξ ∈ ∂Ω, and with foot-points along horospheres
centered at a common preimage of ξ in ∂hΩ (as described in §1.3); if ξ is C1, then these
are strong unstable manifolds for the Hilbert geodesic flow. The Hopf parametrization
we adopted in §3.3 is convenient for parametrizing stable horospheres, but not
unstable horospheres, and so we define the reversed Hopf parametrization Hopf− :=
ι ◦ Hopf ◦ι (recall that ι denotes the flip involution); using the reversed Hopf
parametrization, we may write unstable horospheres of π−1

h (Geod∞ Ω)× R as sets
of the form {ξ} × J × {t} with ξ ∈ ∂hΩ and t ∈ R.

Theorem 4.4. Let Ω ⊂ P(Rn+1) be a domain and Γ ≤ Aut(Ω) be a non-elementary
rank-one discrete group such that SΩ/Γ admits a finite Sullivan measure mΓ associ-
ated to a Γ-invariant δ(Γ)-conformal density (µx).

Fix a basepoint o ∈ Ω. Let J ⊂ ∂hΩ be a closed subset with µo(J) 6= 0, and
ξ0 ∈ supp(µo) be such that {ξ0} × J ⊂ π−1

h (Geod∞ Ω).
Then for any bounded and uniformly continuous function φ : SΩ/Γ→ R, we have

1

cJ(ξ0)

∫
J

φ̃(ξ0, η, t)e
−2δΓ〈ξ0,η〉odµo(η) −−−→

t→∞

1

‖mΓ‖

∫
SΩ/Γ

φdmΓ

where cJ (ξ0) :=
∫
J
e−2δΓ〈ξ0,η〉odµo(η) and the function φ̃ is the Γ-invariant lift of φ

to π−1
h (Geod Ω)× R.

Recall that if Ω is strictly convex with C1 boundary, then the (reversed) Hopf
parametrization is a homeomorphism. Therefore, in this case, π−1

h (Geod Ω) × R,
∂2Ω × R and SΩ are all identified, the support of µ0 is ΛΓ, and the condition
ξ0 × J ⊂ π−1

h (Geod∞Ω) in the above statement can be simply reformulated as
ξ0 6∈ J .

Proof. We may suppose that φ is non-negative. Consider a compact neighborhood
I0 3 ξ0 sufficiently small such that I0 × J ⊂ π−1

h (Geod∞Ω). Then for any ε > 0,
we can choose a compact neighborhood I ⊂ I0 of ξ0 and r > 0 such that
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(i) 1− ε ≤ e−2δΓ〈ξ0,η〉o

e−2δΓ〈ξ,η〉o
≤ 1 + ε for any (ξ, η) ∈ I × J , and

(ii)
∣∣∣φ̃(ξ, η, t+ s)− φ̃(ξ0, η, t)

∣∣∣ ≤ ε for any (ξ, η) ∈ I × J , s ∈ [0, r], and t > 0.

The second property holds since choosing I and r sufficiently small ensures that, for
ξ ∈ I and s ∈ [0, r], the vectors Hopf−(ξ, η, s) and Hopf−(ξ0, η, 0) are uniformly (in
η ∈ J) close. Moreover, since they both belong to the same weak stable leaf, given
by the vectors pointing towards πh(η), flowing them by the geodesic flow does not
increase their distance [Bla20, Prop. 5.1].

It then follows from properties (i) and (ii) that, for any fixed t, the integral

1

cJ(ξ0)

∫
J

φ̃(ξ0, η, t)e
−2δΓ〈ξ0,η〉odµo(η)

differs from

1

cJ(ξ0)rµo(I)

∫
I×J×[0,r]

φ̃(ξ, η, t+ s)e−2δΓ〈ξ,η〉o dµo(ξ) dµo(η) ds

=
1

cJ(ξ0)rµo(I)

∫
I×J×[0,r]

φ̃(ξ, η, t+ s) dmh

by at most ε
(

1 + 2
1−ε |φ|∞

)
. By the mixing property of the geodesic flow and

Remark 4.3 (which are still true if we replace SΩ by π−1
h (Geod∞ Ω)×R since Hopf−

is a bijection on sets of full measure), we may choose t large enough so that∣∣∣∣∣
∫
I×J×[0,r]

φ̃(ξ, η, t+ s) dmh − mh(I × J × [0, r])

‖mΓ‖
·
∫
SΩ/Γ

φdmΓ

∣∣∣∣∣ ≤ εrµo(I),

whence the conclusion follows, since

mh(I × J × [0, r])

rµo(I)
=

1

µo(I)

∫
I×J

e−2δΓ〈ξ,η〉o dµo(ξ) dµo(η)

is bounded from below by (1− ε) cJ(ξ0) and from above by (1 + ε) cJ(ξ0). �

5. Equidistribution of group orbits

In this section, following [Rob03, Th. 4.1.1], we prove an orbital equidistribution
result, with consequences for orbital counting functions:

Theorem 5.1. Let Ω ⊂ P(Rn+1) be a domain, and suppose Γ < Aut(Ω) is a
non-elementary rank-one discrete subgroup such that SΩ/Γ admits a finite Sullivan
measure mΓ associated to a Γ-equivariant conformal density µ of dimension δ(Γ).
Then, for all x, y ∈ Ω,

δ‖mΓ‖e−δt
∑
γ∈Γ

dΩ(x,γy)≤t

Dγy ⊗Dγ−1x −−−−→
t→+∞

µx ⊗ µy

weakly in C(Ω̄× Ω̄)∗.

This has as immediate corollaries, by integrating in one or both factors,

Corollary 5.2. δ‖mΓ‖e−δt
∑
γ∈Γ

dΩ(x,γy)≤t

Dγy −−−→
t→∞

‖µy‖µx weakly in C(Ω̄)∗.
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Corollary 5.3. # {γ ∈ Γ | dΩ(x, γy) ≤ t} ∼
t→∞

‖µx‖‖µy‖
δ‖mΓ‖ eδt, i.e. the ratio of the two

sides goes to 1 as t→∞.

The second corollary is most directly a counting result; the corollary before that
is an equidistribution result for the Patterson–Sullivan measures. The theorem
includes both of these statements, and is more directly related to the mixing of the
Hilbert geodesic flow (Theorem 4.2), as we shall see below in the proof.

These results are very much in the spirit of results first formulated by Margulis
in the setting of closed manifolds of variable negative curvature [Mar69] and subse-
quently extended and generalized to much more general settings with some trace of
negative curvature. We refer the interested reader to [Bab02b] and the beginning of
[Rob03, Chap. 4] for a more extended discussion of this history.

Proof of Theorem 5.1. Let νtx,y denote the measure δ‖mΓ‖e−δt
∑
γ∈ΓDγy ⊗Dγ−1x.

To prove the desired convergence, we need to show that∫
Ω̄×Ω̄

ϕdνtx,y −−−→
t→∞

∫
Ω̄×Ω̄

ϕd(µx ⊗ µy)

for all ϕ ∈ C(Ω̄× Ω̄).
Let us give a overview of the proof before plunging into the details. The proof

uses mixing of the geodesic flow applied to suitable geometrically-described sets:
given x ∈ Ω, A ⊂ ∂Ω, and r > 0, define

C+
r (x,A) := {y ∈ Ω | ∃x′ ∈ B(x, r), ξ ∈ A : B(y, r) ∩ (x′ξ) 6= ∅} ,

C−r (x,A) :=

y ∈ Ω |B(y, r) ⊂
⋂

x′∈B(x,r)

⋃
ξ∈A

(x′ξ)

 .

These may be thought of as expanded or contracted cones from x to A, with the
parameter r controlling the expansion or contraction. We can use mixing to show
that the (µx⊗µy)-measures of sufficiently small measurable sets Ā× B̄ ⊂ Ω̄× Ω̄ are
uniformly well-approximated by νtx,y-measures of corresponding products of cones
over related sets A and B. Here “sufficiently small” means “contained in one of a
system of neighborhoods V̂ × Ŵ ⊂ Ω̄× Ω̄, one for each (ξ0, η0) ∈ ∂Ω× ∂Ω.”

Using this, we can approximate any sufficiently small Borel subset of Ω×Ω using
products of such cones. From there, using standard arguments to approximate
continuous positive functions using characteristic functions, we obtain the desired
convergence of integrals if we replace the domain Ω × Ω with V̂ × Ŵ . We are
then done by taking a finite subcover of the cover of the compact Ω× Ω by these
neighbourhoods V̂ × Ŵ and using a partition of unity subordinate to this subcover.

The technical crux of the proof is then the following

Proposition 5.4. In the setting of Theorem 5.1, fix ε > 0, ξ0, η0 ∈ ∂Ω extremal
and C1, and x, y ∈ Ω. Then there exist R > 0 and open neighborhoods V and W of
ξ0 and η0 (resp.) in ∂Ω, such that for all Borel subsets A ⊂ V,B ⊂W , we have

lim sup
T→+∞

νTx,y(C−R (x,A)× C−R (y,B)) ≤ eεµx(A)µy(B),

lim inf
T→+∞

νTx,y(C+
R (x,A)× C+

R (y,B)) ≥ e−εµx(A)µy(B).

Proof. We proceed by estimating the νTx,y-measure of products of cones using several
other geometric objects, all naturally equivariant under the isometries of Ω:



Ergodicity and equidistribution in Hilbert geometry 27

1. For z ∈ Ω and (ξ, η) ∈ Geod∞ Ω, let zξη denote the point of SΩ parallel to (η ξ)
(i.e. determining a geodesic with forward endpoint ξ) with foot-point the middle
point of the segment (η ξ) ∩ BΩ(z, dΩ(z, (η ξ)). Given in addition r > 0 and
A ⊂ ∂Ω, define

K+(z, r, A) :=
{
gszξη | −

r

2
≤ s ≤ r

2
, (ξ, η) ∈ Geod∞ Ω, η ∈ A, dΩ(z, (ξ η)) ≤ r

}
.

We remark that when Ω is strictly convex with C1 boundary, the foot-point is
also the nearest-point projection of z onto (ξ η).

Inverting the role of ξ and η in the above definition yields ιK+(z, r, A) =:
K−(z, r, A). We will also write K(z, r) to denote K+(z, r, ∂Ω) ∪K−(z, r, ∂Ω).
We remark that K(z, r) ⊂ SBΩ(z, 3r/2) by construction.

2. Given r > 0 and a, b ∈ Ω with dΩ(a, b) > 2r, we will consider the following
enlarged and contracted shadows:

O+
r (a, b) :=

{
ξ ∈ ∂Ω | ∃a′ ∈ BΩ(a, r) : (a′ξ) ∩BΩ(b, r) 6= ∅

}
,

O−r (a, b) :=
{
ξ ∈ ∂Ω | ∀a′ ∈ BΩ(a, r) : (a′ξ) ∩BΩ(b, r) 6= ∅

}
.

Observe that, when a→ η ∈ ∂Ω, if η is extremal then these variant shadows
have as a common limit (in the Hausdorff topology)

Or(η, b) =
{
ξ ∈ ∂Ω | (η ξ) ∩B(b, r) 6= ∅

}
=: O±r (η, b).

Note also that

(5.1) O+
r (a, b) ⊂ O2r(a, b).

Indeed if a′ ∈ BΩ(a, r), b′ ∈ BΩ(b, r) and ξ ∈ ∂Ω are aligned in this order, then
the point b′′ ∈ [a ξ) at distance dΩ(a′, b′) from a is at distance at most 2r from b
since by Lemma 1.1 it is at distance at most r from b′.

3. For r > 0 and a, b ∈ Ω with dΩ(a, b) > 2r, we denote by Lr(a, b) the set of
(ξ, η) ∈ Geod∞Ω such that the geodesic (ξη) crosses first BΩ(a, r) and then
BΩ(b, r). Observe that

(5.2) O−r (b, a)×O−r (a, b) ⊂ Lr(a, b) ⊂ O+
r (b, a)×O+

r (a, b).

Now write ε′ = ε/100. Choose r ∈ (0,min{1, ε′/δ}) with µx(∂Or(ξ0, x)) = 0 =
µy(∂Or(η0, y)). Note ∂Or is the boundary of Or as a subset of ∂Ω.

5.1. Stage 1. We first prove the result for x, y ∈ Ω where x ∈ (ξ0ξ
′
0) and y ∈ (η0η

′
0)

for some ξ′0, η
′
0 ∈ ΛΓ (and with R = 1). Thus we have ξ′0 ∈ Or(ξ0, x), and similarly

η′0 ∈ Or(η0, y); hence

M := r2 µx(Or(ξ0, x))µy(Or(η0, y)) > 0.

Take two open sets V̂1, Ŵ1 of Ω, containing ξ0, η0 respectively, and sufficiently small

so that for all a ∈ V̂1, b ∈ Ŵ1, we have

e−ε
′
µx(Or(ξ0, x)) ≤ µx(O±r (a, x)) ≤ eε

′
µx(Or(ξ0, x)),(5.3)

e−ε
′
µy(Or(η0, y)) ≤ µy(O±r (b, y)) ≤ eε

′
µy(Or(η0, y)).(5.4)

This is possible because ξ0 and η0 are extremal. Indeed one can see that for any
compact subset K ⊂ Or(ξ0, x) and any neighbourhood U of Or(ξ0, x), there exists

a neighbourhood Û of ξ0 in Ω such that for any a ∈ Û ,

K ⊂ O−r (a, x) ⊂ O+
r (a, x) ⊂ U.
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Then, using again the fact that ξ0 and η0 are extremal, we can find two open

sets V̂ , Ŵ of Ω, containing ξ0, η0 respectively, and sufficiently small so that for all

a ∈ V̂ , b ∈ Ŵ , we have BΩ(a, 1) ⊂ V̂1 and BΩ(b, 1) ⊂ Ŵ1.

Choose open neighborhoods V,W of ξ0, η0 (resp.) in ∂Ω, such that V ⊂ V̂ ∩ ∂Ω

and W ⊂ Ŵ ∩ ∂Ω. In general, these will be the open neighborhoods we desire.
Consider Borel subsets A ⊂ V and B ⊂ W . Let K+ := K+(x, r, A) and

K− := K−(y, r, B), and, for T > 0,

S±T := {γ ∈ Γ | dΩ(x, γy) ≤ T, γy ∈ C±1 (x,A), γ−1x ∈ C±1 (y,B)}.

We will estimate asymptotically, in two different ways, the quantity∫ T

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−) dt.

On the one hand, this can be estimated using our mixing result. On the other hand,
we can obtain a different estimate by examining how the elements of Γ contribute to
the various parts of the integral; we will observe that the elements which contribute
are, asymptotically as T →∞, those in S±T .

More precisely, we establish the following estimates for T > 0 large enough:

eδTMµx(A)µy(B) ≤ e10ε′δ‖mΓ‖
∫ T−3r

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt+ c1(5.5)

≤ e(10+5)ε′δ‖mΓ‖r2
∑
γ∈S+

T

µx(O+
r (γy, x))µx(O+

r (x, γy))eδ·dΩ(x,γy) + c1 + c2(5.6)

≤ e(10+5+6)ε′eδTMνTx,y(C+
1 (x,A)× C+

1 (y,B)) + c1 + c2 + c3,(5.7)

and

eδTMµx(A)µy(B) ≥ e−6ε′δ‖mΓ‖
∫ T+3r

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt− c4(5.8)

≥ e−(6+3)ε′δ‖mΓ‖r2
∑
γ∈S−T

µx(O−r (γy, x))µx(O−r (x, γy))eδ·dΩ(x,γy) − c4 − c5(5.9)

≥ e−(6+3+2)ε′MeδT νTx,y(C−1 (x,A)× C−1 (y,B))− c4 − c5 − c6,(5.10)

where (ci)1≤i≤6 are constants independent of T .

5.1.1. (5.7) and (5.10): shadows to cones. (5.7) and (5.10) are consequences of
the definition of νTx,y, of the conformality of (µz)z, and of (5.3) and (5.4). Indeed,
consider the following slight modification of Lemma 3.1.

Lemma 5.5 ([Bla21b, Lem. 4.3]). For all ξ ∈ π−1
h (O+

r (x, y)), we have

dΩ(x, y)− 4r ≤ βξ(x, y) ≤ dΩ(x, y).

We apply this to obtain, by conformality of (µz)z, that, for any γ ∈ Γ,

µy(O±r (γ−1x, y)) ≤ µx(O±r (x, γy))eδ·dΩ(x,γy) ≤ e4ε′µy(O±r (γ−1x, y)).
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Denote S± =
⋃
T>0 S

±
T and S := {γ ∈ Γ | γy ∈ V̂1, γ

−1x ∈ Ŵ1}. By (5.3) and

(5.4), and using the definition of νTx,y we obtain, on the one hand,∑
γ∈S+

T

µx(O+
r (γy, x))µx(O+

r (x, γy))eδ·d(x,γy)

≤ e4ε′
∑
γ∈S+

T

µx(O+
r (γy, x))µy(O+

r (γ−1x, y))

≤ e4ε′
∑

γ∈S+
T ∩S

µx(O+
r (γy, x))µy(O+

r (γ−1x, y)) + e4ε′‖µx‖ · ‖µy‖ · |S+ r S|

≤ e6ε′r−2M · |S+
T ∩ S|+ c′3 ≤ e6ε′r−2M · |S+

T |+ c′3

≤ e6ε′r−2M · eδT

δ‖mΓ‖
νTx,y(C+(x,A)× C+

1 (y,B)) + c′3,

where one can check that c′3 := e4ε′‖µx‖ · ‖µy‖ · |S+ r S| is finite. Indeed, since

V ⊂ V̂ which is open in Ω, there must exist some R > 0 such that for any

x′ ∈ BΩ(x, 1), ξ ∈ V and z ∈ [x′ξ), if dΩ(x, z) ≥ R, then z ∈ V̂ ; as a consequence,

if γy ∈ C+
1 (x,A) r V̂1, then dΩ(x, γy) ≤ R+ 1. Similarly one can find R′ > 0 such

that dΩ(x, γy) ≤ R′ whenever γ−1x ∈ C+
1 (y,B) r Ŵ1.

On the other hand,∑
γ∈S−T

µx(O−r (γy, x))µx(O−r (x, γy))eδd(x,γy) ≥
∑

γ∈S−T ∩S

µx(O−r (γy, x))µy(O−r (γ−1x, y))

≥ e−2ε′r−2M · |S−T ∩ S|

≥ e−2ε′r−2M · |S−T | − e
2ε′r−2M · |S− r S|

= e−2ε′r−2M · eδT

δ‖mΓ‖
νTx,y(C−1 (x,A)× C−1 (y,B))− c′6,

where one can check that c′6 := e−2ε′r−2M · |S− r S| is finite.

5.1.2. (5.6): geodesic corridors to shadows, upper bound. We may verify, by recalling
the definitions of m and K±, that for γ ∈ Γ with dΩ(x, γy) > 2r, we have

(5.11) m(K+ ∩ g−tγK−) =

∫
dµx(ξ) dµx(η)

e−2δ〈ξ,η〉x

∫ r/2

−r/2
1K(γy,r)(g

t+sxξη) ds

where the integral is supported on Lr(x, γy) ∩ (γB ×A).
Then (5.6) is a consequence of the following facts:

(i) the following non-negative number is finite:

c′2 :=

∫ ∞
0

eδt
∑

dΩ(x,γy)≤2r

m(K+ ∩ g−tγK−)dt;

indeed, if γ ∈ Γ is such that dΩ(x, γy) ≤ 2r, then K+ ∩ g−tγK− is empty as
soon as t > 5r;

(ii) for (ξ, η) ∈ Lr(x, γy), |s| ≤ r
2 , and T > 0, we see, by examining the definition

of K(γy, r), that∫ T−3r

0

eδt1K(γy,r)(g
t+sxξη)dt ≤ e3δrreδ·dΩ(x,γy) ≤ e3ε′reδ·dΩ(x,γy)



30 Pierre-Louis Blayac and Feng Zhu

and also that this integral is zero if dΩ(x, γy) > T ;

(iii) e−2δ〈ξ,η〉x ≥ e−2δr ≥ e−2ε′ for (ξ, η) ∈ Lr(x, γy);
(iv) if Lr(x, γy) ∩ (γB × A) 6= ∅, then γy ∈ C+

1 (x,A) and γ−1x ∈ C+
1 (y,B) (we

have taken care to ensure r < 1);
(v) according to (5.2), Lr(x, γy) ⊂ O+

r (γy, x)×O+
r (x, γy).

5.1.3. (5.9): geodesic corridors to shadows, lower bound. (5.9) follows from (5.11)
together with the following facts:

(i) e−〈ξ,η〉x ≤ 1;
(ii) for (ξ, η) ∈ Lr(x, γy), |s| ≤ r

2 and T > 0, we have∫ T+3r

0

eδt1K(γy,r)(g
t+sxξη)dt ≥ e−3ε′reδ·dΩ(x,γy)

if 3r ≤ dΩ(x, γy) ≤ T ;
(iii) if γy ∈ C−1 (x,A), then A ⊃ O−r (x, γy). Similarly, if γ−1x ∈ C−1 (y,B), then

B ⊃ O−r (y, γ−1x), i.e. γB ⊃ O−r (γy, x). By (5.2), if both conditions are
satisfied, then

Lr(x, γy) ∩ (γB ×A) ⊃ O−r (γy, x)×O−r (x, γy);

(iv) the following non-negative number is finite:

c′5 := e−3ε′r2
∑

dΩ(x,γy)≤3r

µx(O−r (γy, x))µx(O−r (x, γy))eδ·dΩ(x,γy)

≤ e−3ε′r2e3δr‖µx‖2#{γ ∈ Γ | dΩ(x, γy) ≤ 3r}.

5.1.4. (5.5) and (5.8): the mixing step. Since the geodesic flow in the quotient is
strongly mixing with respect to mΓ (Theorem 4.2; see also Remark 4.3), we have
some t0 > 0, such that for all t > t0,

(5.12) e−ε
′
m(K+)m(K−) ≤ ‖mΓ‖

∑
γ∈Γ

m(K+ ∩ g−tγK−) ≤ eε
′
m(K+)m(K−).

Recalling the definition of K+ = K+(x, r,A), we see that

m(K+) = r

∫
A

dµx(ξ)

∫
Or(ξ,x)

eδ〈ξ,ζ〉xdµx(ζ).

Since 0 ≤ 〈ξ, ζ〉x ≤ r (from Corollary 1.6) and A ⊂ V̂1, by (5.3) we obtain

e−ε
′
µx(Or(ξ0, x)) ≤

∫
Or(ξ,x)

e2δ〈ξ,ζ〉xdµx(ζ) ≤ e3ε′µx(Or(ξ0, x))

and hence

(5.13) e−ε
′
r µx(A)µx(Or(ξ0, x)) ≤ m(K+) ≤ e3ε′r µx(A)µx(Or(ξ0, x)).

Arguing similarly with K− = K−(y, r, B), we obtain

(5.14) e−ε−r µy(B)µy(Or(η0, y)) ≤ m(K−) ≤ e3ε′r µy(B)µy(Or(η0, y)).



Ergodicity and equidistribution in Hilbert geometry 31

Hence, using (5.12) we have

δ‖mΓ‖
∫ T−3r

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt ≥ δ‖mΓ‖
∫ T−3r

T0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt

≥ e−ε
′
m(K+)m(K−)

∫ T−3r

T0

δeδtdt

and so, by (5.13) and (5.14),

δ‖mΓ‖
∫ T−3r

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt

= e−ε
′
m(K+)m(K−) (eδT e−3δr − eT0)

≥ e−4ε′eδTm(K+)m(K−)− c′1
≥ e−6ε′eδT r2µx(A)µy(B)µx(Or(ξ0, x))µx(Or(η0, y))− c′1
≥ e−6ε′eδTMµx(A)µy(B)− c′1,

where c′1 := eT0e−ε/3m(K+)m(K−). Similarly,

δ‖mΓ‖
∫ T+3r

0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt

≤ δ‖mΓ‖
∫ T+3r

T0

eδt
∑
γ∈Γ

m(K+ ∩ g−tγK−)dt+ c′4

≤ eε
′
m(K+)m(K−)

∫ T+3r

T0

δeδt + c′4

= eε
′
m(K+)m(K−) (eδT e3δr − eT0) + c′4

≤ e4ε′eδTm(K+)m(K−) + c′4

≤ e10ε′eδTM µx(A)µy(B) + c′4

where c′4 := δ‖mΓ‖
∫ T0

0
eδt
∑
γ∈Γm(K+ ∩ g−tγK−)dt.

5.2. Stage 2. For more general x, y ∈ Ω, given ξ0, η0 ∈ ∂Ω C1 and extremal, choose
ζ0 ∈ ΛΓ r {ξ0, η0} which is strongly extremal, and x0 ∈ (ξ0ζ0) and y0 ∈ (η0ζ0).
From the previous step we have neighborhoods V0,W0 of ξ0, η0 (respectively) such
that the result of the lemma holds for x0 and y0 in the place of x and y and V0 and
W0 in the place of V and W .

Let then V̂0 and Ŵ0 be two open sets of Ω containing respectively ξ0 and η0 such

that V̂0 ∩ ∂Ω ⊂ V0 and Ŵ0 ∩ ∂Ω ⊂W0, and for all a ∈ π−1
h V̂0 and b ∈ π−1

h Ŵ0,

|βa(x0, x)− βξ0(x0, x)| < ε

6δ

|βb(y0, y)− βη0
(y0, y)| < ε

6δ
.

Set R := 1 + max{dΩ(x, x0), dΩ(y, y0)}, and take a neighbourhood V̂1 (resp. Ŵ1)

of ξ0 (resp. η0) such that BΩ(z,R) is contained in V̂0 (resp. Ŵ0) for any z in V̂1

(resp. Ŵ1). Take two open neighborhoods V and W of ξ0 and η0 (respectively) in

∂Ω, such that BΩ(V ,R)∩ ∂Ω ⊂ V̂1 ∩ ∂Ω and BΩ(W,R)∩ ∂Ω ⊂ Ŵ1 ∩ ∂Ω. Consider
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A ⊂ V and B ⊂W . We now relate the orbit of y seen from x to that of y0

seen from x0, thanks to the following observations:
First, using the definition of R and C±R , one can easily verify that, for any γ ∈ Γ,

(γy, γ−1x) ∈ C−R (x,A)× C−R (y,B)⇒ (γy0, γ
−1x0) ∈ C−1 (x0, A)× C−1 (y0, B),

(γy0, γ
−1x0) ∈ C+

1 (x0, A)× C+
1 (y0, B)⇒ (γy, γ−1x) ∈ C+

R (x,A)× C+
R (y,B).

Second, if (γy, γ−1x) ∈ V̂1 × Ŵ1, then γy0 ∈ V̂0 and γ−1x ∈ Ŵ0, whence

dΩ(x0, γy0) = dΩ(x,γy0) + βγy0
(x0, x)

≤ dΩ(x, γy0) + βξ0(x0, x) +
ε

6δ

= dΩ(y0, γ
−1x) + βξ0(x0, x) +

ε

6δ

≤ dΩ(y, γ−1x) + t0 +
ε

3δ
,

where t0 := βη0
(y0, y) + βξ0(x0, x). Symmetrically, if (γy0, γ

−1x0) ∈ V̂1 × Ŵ1, then

dΩ(x0, γy0) ≥ dΩ(y, γ−1x) + t0 −
ε

3δ
.

Third, the sets (C+
R (x,A)∪ C+

R (x0, A))r V̂1 and (C+
r (y,B)∪ C+

r (y0, B))r Ŵ1 are
bounded in Ω because any accumulation point of any sequence of C+

r (x,A) which

diverges in Ω must belong to B(A, r) ⊂ V̂1. Therefore

νtx,y

(
C−R (x,A)× C−R (y,B) r V̂1 × Ŵ1

)
−−−→
t→∞

0,

νtx0,y0

(
C+
R (x0, A)× C+

R (y0, B) r V̂1 × Ŵ1

)
−−−→
t→∞

0.

i.e. when we are taking the limits of the measures of C−R (x,A) × C−R (y,B) and

C+
R (x0, A)× C+

R (y0, B), we may restrict to looking at points inside V̂1 × Ŵ1, where
the distance estimates from the previous observation hold.

Together, these observations imply that

lim sup
t→+∞

νtx,y(C−R (x,A)× C−R (y,B)) ≤ eδ·(t0+ ε
3δ ) lim sup

t→+∞
ν
t+t0+ ε

3δ
x0,y0

(
C−1 (x0, A)× C−1 (y0, B)

)
≤ e2ε/3eδt0µx0(A)µy0(B)

≤ e2ε/3(eδ·(βξ0 (x0,x)µx0
(A)) (eβη0

(y0,y))µy0
(B))

≤ eεµx(A)µy(B),

where we have used the conformality of the (µz)z to say, for example, that
dµx0

dµx
(ξ)

is bounded above by e−δβξ0 (x0,x)+ ε
6 for any ξ ∈ A.

Similarly one shows that

lim inf
t→+∞

νtx,y(C+
R (x,A)× C+

R (y,B)) ≥ eδ(t0−
ε
3δ ) lim inf

t→+∞
ν
t+t0− ε

3δ
x0,y0

(
C+

1 (x0, A)× C+
1 (y0, B)

)
≥ e−2ε/3eδt0µx0(A)µy0(B)

≥ e−εµx(A)µy(B).

This concludes the proof of Proposition 5.4. �
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5.3. Negligibility from lack of extremal points. Here we pause to prove two
lemmas which will together be used in the next step of the proof. The first shows
that a sum of Dirac masses at orbit points is bounded above by a Patterson–
Sullivan measure, and hence has negligible mass away from extremal points. The
second establishes that the differences between measurable subsets of Ω and certain
associated cones do not contain extremal points.

Given Ω ⊂ P(Rn+1) a domain and Γ ≤ Aut(Ω) a discrete subgroup, x, y ∈ Ω
and t ≥ 0, we write αtx,y to denote the measure appearing in the first corollary to
Theorem 5.1, i.e.

αtx,y :=
∑
γ∈Γ

dΩ(x,γy)≤t

Dγy.

If M = Ω/Γ is non-elementary and rank-one, then the Sullivan shadow lemma
(Lemma 3.2) implies that (e−δΓtαtx,y(Ω))t is bounded, see e. g. [Bla21b, Prop. 4.7].
The following lemma is a refinement of this idea:

Lemma 5.6. Let Ω ⊂ P(Rn+1) be a domain, Γ ≤ Aut(Ω) a divergent non-
elementary rank-one discrete subgroup, and (µx) a conformal density of dimension
δ = δΓ on Ω. Then there exists C > 0 such that α ≤ Cµx for any accumulation
point α of (αtx,y)t→∞.

In particular, if K ⊂ Ω is compact and does not contain any extremal point, then

αtx,y(K) −−−→
t→∞

0.

Proof. Since ∂sseΩ has full µx-measure by Theorem 3.3, and by the interior regularity
of finite measures, it is enough to find C > 0 and R > 0 such that for any compact
subset K ⊂ Ω,

α(K) ≤ Cµx(BΩ(K,R)).

By Lemma 3.2, there exist R > 0 and C1 > 0 such that for any γ ∈ Γ,

µx(OR(x, γy)) ≥ C−1
1 e−δdΩ(x,γy).

Fix ε > 0. Let U be a neighbourhood in Ω of BΩ(K,R) such that µx(U) ≤
µx(BΩ(K,R)) + ε. Let V be a neighbourhood in Ω of K such that OR(x, z) ⊂ U
for any z ∈ V ∩ Ω. Observe that for all t ≥ 0 and ξ ∈ ∂Ω,

(5.15) #{γ | t− 1 ≤ dΩ(x, γy) ≤ t, ξ ∈ OR(x, γy)} ≤ #{g | dΩ(y, gy) ≤ 4R+ 1}.

Indeed, if γ, g ∈ Γ are such that t−1 ≤ dΩ(x, γy), dΩ(x, γgy) ≤ t and ξ ∈ OR(x, γy)∩
OR(x, γgy), then let y1 ∈ [x ξ) ∩BΩ(γy,R) and y2 ∈ [x ξ) ∩BΩ(γgy,R), so that

dΩ(y, gy) = dΩ(γy, γgy) ≤ R+ dΩ(y1, y2) +R

= 2R+ |dΩ(x, y1)− dΩ(x, y2)|
≤ 4R+ |dΩ(x, γy)− dΩ(x, γgy)| ≤ 4R+ 1.
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Then we have

α(K) ≤ lim sup
t→∞

e−δtαtx,y(V )

:= lim sup
t→∞

e−δt#{γ | 0 ≤ dΩ(x, γy) ≤ t, γy ∈ V }

≤ eδ lim sup
t→∞

∑
1≤k≤bt+1c

eδ(k−bt+1c)e−δk#{γ | k − 1 ≤ dΩ(x, γy) ≤ k, γy ∈ V }

≤ C1e
δ lim sup

n→∞

∑
1≤k≤n

eδ(k−n)
∑

k−1≤dΩ(x,γy)≤k
γy∈V

µx(OR(x, γy)).

Now recall that OR(x, γy) ⊂ U for any γy ∈ V . Hence by (5.15) we have

α(K) ≤ C1e
δ lim sup

n→∞

∑
1≤k≤n

eδ(k−n)

∫
U

∑
k−1≤dΩ(x,γy)≤k

γy∈V

1OR(x,γy)(ξ) dµx(ξ)

≤ C1e
δ lim sup

n→∞

∑
1≤k≤n

eδ(k−n)#{γ | dΩ(y, γy) ≤ 4R+ 1} µx(U)

≤ Cµx(BΩ(K,R)) + Cε,

where C := C1e
δ

1−e−δ ·#{γ | dΩ(y, γy) ≤ 4R + 1}. The previous estimates hold for any

ε > 0, and therefore we have α(K) ≤ Cµx
(
BΩ(K,R)

)
as desired. �

This lemma will be useful below in combination with the next one, which shows
that certain sets we will want to have small measure do not contain extremal points:

Lemma 5.7. Let Ω ⊂ P(Rn+1) be a domain, r > 0, x ∈ Ω and A ⊂ Ω be
measurable. Then for any open neighborhood A+ of A∩ ∂Ω in ∂Ω, and any compact

subset A− ⊂ int(A) ∩ ∂Ω, A ∩ Ω r C−r (x,A+) and C+
r (x,A−) rA do not contain

any extremal point of Ω.

Proof. Consider a sequence (yn)n of points in A ∩ Ω r C−r (x,A+) that converges
to y ∈ ∂Ω ∩ A; we show that y is not extremal. By definition, for each n there
exist xn ∈ BΩ(x, r) and zn ∈ BΩ(yn, r) r Cr(xn, A+). Up to subsequence, we can
assume that xn 6= zn for any n and that (xn)n and (zn)n converge respectively to
x′ ∈ BΩ(x, r) and z ∈ BΩ(y, r). For each pair (a, b) ∈ Ω×Ω such that a 6= b, denote
by O(a, b) the unique point c ∈ ∂Ω such that b ∈ [a c]. The map O is continuous, so
O−1(∂Ω rA+) is closed, hence it must contain (x′, z), since it contains {(xn, zn)}n.
Since z ∈ ∂Ω, we have that O(x′, z) = z 6∈ A+ 3 y. Hence z ∈ BΩ(y, r) r {y}, and
so y is not extremal.

Consider a sequence (yn)n of points in C+
r (x,A−) r A that converges to y ∈

∂Ωrint(A); we show that y is not extremal. By definition, for each n there exist xn ∈
BΩ(x, r) and zn ∈ BΩ(yn, r) r {xn} such that O(xn, zn) ∈ A−. Up to subsequence,
(xn)n and (zn)n converge respectively to x′ ∈ BΩ(x, r) and z ∈ BΩ(y, r). By

continuity, z = O(x′, z) is in the closed set A−. Thus, z ∈ BΩ(y, r)r{y}, and hence
y is not extremal. �

5.4. End of proof.
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Proposition 5.8. In the setting of Theorem 5.1, for any x, y ∈ Ω, ε > 0, and C1

and extremal ξ0, η0 ∈ ∂Ω, there exist open neighborhoods V̂ and Ŵ of ξ0 and η0 in

Ω such that for any non-negative function ϕ supported on V̂ × Ŵ ,

e−ε
∫
ϕd(µx ⊗ µy) ≤ lim inf

∫
ϕdνtx,y ≤ lim sup

∫
ϕdνtx,y ≤ eε

∫
ϕd(µx ⊗ µy).

Proof. Let V̂ and Ŵ be the open neighborhoods given by Proposition 5.4. It is

enough to prove that for all measurable subsets A and B such that A ⊂ V̂ , B ⊂ Ŵ
and µx(∂A) = µy(∂B) = 0, we have

e−εµx(A)µy(B) ≤ lim inf νtx,y(A× B) ≤ lim sup νtx,y(A× B) ≤ eεµx(A)µy(B).

Let ε′ > 0. Let A+ (resp. B+) be an open neighborhood of A ∩ ∂Ω (resp. B ∩ ∂Ω)
in ∂Ω, and A− ⊂ int(A) ∩ ∂Ω (resp. B− ⊂ int(B) ∩ ∂Ω) be compact such that

µx(int(A) rA−) + µx(A+ rA) + µy(int(B) rB−) + µy(B+ r B) < ε′.

By Lemma 5.6 and Lemma 5.7,

e−δtαtx,y(Ar C−r (x,A+)), e−δtαtx,y(C+
r (x,A−) rA),

e−δtαty,x(Ar C−r (y,B+)), and e−δtαty,x(C+
r (y,B−) r B)

all converge to zero as t→∞. Since the projections of νtx,y to the first and second

coordinates are, respectively, δ‖mΓ‖e−δtαtx,y and δ‖mΓ‖e−δtαty,x, we have that

lim sup νtx,y(A× B) ≤ lim sup νtx,y(C−r (x,A+)× C−r (y,B+))

lim inf νtx,y(A× B) ≥ lim inf νtx,y(C+
r (x,A−)× C+

r (y,B−))

and hence

lim sup νtx,y(A× B) ≤ lim sup νtx,y(C−r (x,A+)× C−r (y,B+))

≤ eεµx(A+)µy(B+)

≤ eεµx(A)µy(B) + ε′eε(‖µx‖+ ‖µy‖),

and

lim inf νtx,y(A× B) ≥ lim inf νtx,y(C+
r (x,A−)× C+

r (y,B−))

≥ e−εµx(A−)µy(B−)

≥ e−εµx(A)µy(B)− ε′eε(‖µx‖+ ‖µy‖).

This ends the proof of the proposition, since ε′ can be taken arbitrarily small. �

We now conclude the proof of Theorem 5.1.
Let ν be an accumulation point of (νtx,y)t→∞. Let ϕ be a non-negative continuous

function on Ω
2
; it is enough to prove that for any ε > 0,

e−ε
∫
ϕd(µx ⊗ µy)− ε ≤

∫
ϕdν ≤ eε

∫
ϕd(µx ⊗ µy) + ε.

As noted above, the projection of ν to the first and second coordinates are accu-
mulation points of, respectively, (δ‖mΓ‖e−δtαtx,y)t and (δ‖mΓ‖e−δtαty,x)t. Thus,
according to Lemma 5.6, ν (as well as µx⊗ µx) gives full measure to the set of pairs
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of C1 and extremal points of Ω. Let K ⊂ ∂Ω be a compact set of C1 and extremal
points such that ∫

Ω
2rK2

ϕdν +

∫
Ω

2rK2

ϕd(µx ⊗ µy) ≤ ε.

By Proposition 5.8, K2 can be covered by a finite number of open sets (Ui)1≤i≤n,
where n ∈ N>0, such that for any 1 ≤ i ≤ n, for any non-negative function ψ
supported on Ui,

e−ε
∫
ψ d(µx ⊗ µy) ≤

∫
ψ dν ≤ eε

∫
ψ d(µx ⊗ µy).

Set U0 := Ω
2 rK2. Let (χi)0≤i≤n be a partition of unity associated to (Ui)0≤i≤n.

Then ∫
ϕdν =

∫
χ0ϕdν +

n∑
i=1

∫
χiϕdν

≤ ε+ eε
n∑
i=1

∫
χiϕd(µx ⊗ µy)

≤ eε
∫
ϕd(µx ⊗ µy) + ε,

and similarly ∫
ϕdν ≥ e−ε

∫
ϕd(µx ⊗ µy)− ε. �

6. Equidistribution of primitive closed geodesics

In this section, following [Rob03, Th. 5.1.1], we prove an equidistribution result
for primitive closed geodesics, again with counting results for such geodesics as a
consequence:

Theorem 6.1. Let Ω ⊂ P(Rn+1) be a domain, and suppose Γ ≤ Aut(Ω) is a
non-elementary rank-one discrete subgroup such that SΩ/Γ admits a finite Sullivan
measure mΓ associated to a Γ-equivariant conformal density µ of dimension δ(Γ).
Then

δ`e−δ`
∑

g∈Gr1
Γ (`)

Dg −−−−→
`→+∞

mΓ

‖mΓ‖

weakly in Cc(SΩ/Γ)∗.

Here Gr1
Γ (`) denotes the set of primitive closed rank-one geodesics of length at most

` in Ω/Γ, for any primitive closed rank-one geodesic g ∈ Gr1
Γ =

⋃
`>0 Gr1

Γ (`) we write
Dg to denote the normalized Lebesgue measure supported on g, and Cc(SΩ/Γ)∗

denotes the weak* dual of the space of compactly-supported continuous functions
on SΩ/Γ.

If Ω is strictly convex with C1 boundary, then all primitive closed geodesics are
rank-one and we may omit the rank-one hypothesis in the previous paragraph.

As a corollary, we may already obtain the following counting result for primitive
closed rank-one geodesics, by integrating against the measures on both sides a
function f ∈ Cc(SΩ/Γ) which is equal to 1 on the (compact) convex core:
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Corollary 6.2. In the setting of Theorem 6.1, if Γ acts convex cocompactly on Ω,
then

#Gr1
Γ (`) ∼

`→∞

eδ`

δ`
.

As above, these results extend and are inspired by results first proven in the
context of closed manifolds of constant negative curvature [Mar69; Bow72] and
subsequently extended to much more general settings; we refer the interested reader
to the beginning of [Rob03, Chap. 5] for a more extended version of this history.

The proof of Theorem 6.1 will take place in the universal cover. Thus we need to
interpret in the universal cover the Lebesgue measure on rank-one periodic orbits of
SM := SΩ/Γ (in the setting of Theorem 6.1).

Definition 6.3. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold. A rank-one element γ ∈ Γ is said to be strongly primitive if `(γ) ≤ `(γ′)
for any rank-one element γ′ ∈ Γ with the same axis as γ.

Note strong primitivity is conjugacy-invariant.
Let g be a closed rank-one (gtΓ)-orbit in SM . The (strongly primitive) con-

jugacy classes associated to g are the conjugacy classes of (strongly primitive)
elements γ ∈ Γ such that γṽ = g`(γ)ṽ for any ṽ ∈ SΩ in a lift in SΩ of g.

Notation 6.4. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold. For any ṽ ∈ SΩ and ` ≥ 0, we denote by Leb[ṽ g`ṽ] the push-forward by

t 7→ gtṽ of the Lebesgue measure (of mass `) on [0, `].
For any rank-one γ ∈ Γ, we denote by Lebγ the push-forward of the Lebesgue

measure on R by t 7→ gtw̃ for any w̃ ∈ SΩ tangent to the axis of γ.

Observation 6.5. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold. Consider a closed rank-one (gtΓ)-orbit g = {gtv}t ⊂ SM with period `,
where v ∈ SM . Let ṽ ∈ SΩ be any lift of v, and A the union of strongly primitive
conjugacy classes associated to g. Then, using Notations 6.4, the measure ` · Dg is
the quotient of

∑
γ∈Γ γ∗ Leb[ṽ g`ṽ] by Γ (in the same sense than mΓ is the quotient

of m for any Sullivan measures m and mΓ), and∑
γ∈Γ

γ∗ Leb[ṽ g`ṽ] =
∑
γ∈A

Lebγ .

Proof. The measure ` · Dg is the push-forward by πΓ : SΩ→ SM of Leb[ṽ g`ṽ], so
by definition of a quotient measure, ` · Dg is the quotient of

∑
γ∈Γ γ∗ Leb[ṽ g`ṽ] by Γ.

Fix γ0 ∈ Γ such that g`ṽ = γ0ṽ. Let H := StabΓ{gtṽ}t, let R ⊂ Γ be a set of
representatives of Γ/H containing the identity, and B = γ0 StabΓ(ṽ) ⊂ H. Then
Γ = R ·H = R · 〈γ0〉 · StabH(ṽ).∑

γ∈Γ

γ∗ Leb[ṽ g`ṽ] =
∑
n∈Z

(r,h)∈R×StabH(ṽ)

r∗γ
n
∗ h∗ Leb[ṽ g`ṽ] =

∑
n∈Z

(r,h)∈R×StabH(ṽ)

r∗γ
n
∗ Leb[ṽ g`ṽ]

=
∑

(r,h)∈R×StabH(ṽ)

r∗ Lebγ =
∑

(r,h)∈R×StabH(ṽ)

r∗ Lebγh

=
∑

(r,g)∈R×B

Lebrgr−1 .
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Finally observe that the map R×B → A that maps (r, g) to rgr−1 is a bijection,
proving our claim. �

Proof of Theorem 6.1. Let Γpr1 ⊂ Γ be the set of strongly primitive rank-one
elements of Γ (see Definition 6.3). Using Notations 6.4, set

EL := δLe−δL
∑

γ∈Γpr1

`(γ)≤L

1

`(γ)
Lebγ .

As noted in Observation 6.5, the quotient of EL under the action of Γ is precisely

δLe−δL
∑

g∈Gr1
Γ (L)

Dg.

Since mΓ is the quotient of m, we need to prove that EL → m
‖mΓ‖ weakly in Cc(SΩ)∗

when L→ +∞.
We will first use Theorem 5.1 to obtain a measure νLx,1 converging weakly to µ

when L → +∞, then successively modify νLx,1 to form νLx,2 and νLx,3, so that νLx,3
will be supported on pairs of fixed points of rank-one elements, and νLx,3 locally

approaches µ. By taking the product of ‖mΓ‖−1νLx,3 with the Lebesgue measure

on R, we obtain a measure ML
x,3 approaching ‖mΓ‖−1m locally (i.e. near the fibre

over x ∈ Ω in SΩ.) To finish, we relate ML
x,3 to the measure of equidistribution EL.

To relate our various modified measures we will use the following lemma. Observe
that the lemma will also imply that the theorem remains true if we replace Gr1

Γ

by any bigger set of primitive closed straight geodesics that are in different free
homotopy classes.

Lemma 6.6. In the setting of Theorem 6.1, given x ∈ Ω, we have

e−δt ·#{γ ∈ Γ not rank-one | dΩ(x, γx) ≤ t} −−−→
t→∞

0.

Moreover, for any ε > 0, we have,

e−δt ·#{γ ∈ Γ rank-one | dΩ(x, γx) ≤ t and dP(V )(γx, γ
+) ≥ ε} −−−→

t→∞
0.

To prove Lemma 6.6 we need the following fact, which can be seen as a kind of
closing lemma.

Lemma 6.7 ([Bla21b, Cor. 7.13]). Let Ω ⊂ P(Rn+1) be a domain. Fix x ∈ Ω,
(ξ−, ξ+) ∈ ∂2Ω two distinct strongly extremal points and W a neighbourhood of
(ξ−, ξ+) in P(Rn+1)2.

Then there exists a neighbourhood U of (ξ−, ξ+) in Ω
2

such that any γ ∈ Aut(Ω)
with (γ−1x, γx) ∈ U is rank-one with (γ−, γ+) ∈W .

Proof of Lemma 6.6. Fix 0 < ε′ < ε. Since µx ⊗ µx gives full measure to the set
A of distinct pairs of strongly extremal points of the boundary ∂Ω, we can find a

compact subset K ⊂ A such that (µx ⊗ µx)(Ω
2 rK) ≤ δ‖mΓ‖ε′.

By Lemma 6.7 applied with W an ε-neighbourhood of K, we can find a neigh-
bourhood U of K such that for any γ ∈ Γ, if (γ−1x, γx) ∈ U , then γ is rank-one. If
furthermore (γ−1x, γx) ∈ U ∩W , we also have dP(Rn+1)(γx, γ

+) < ε.
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For t > 0 we denote by Bt the set of elements γ such that dΩ(x, γx) ≤ t and such
that either γ is not rank-one or dP(Rn+1)(γx, γ

+) ≥ ε; then

lim sup
t→∞

e−δt ·#Bt ≤ lim sup
t→∞

e−δt

 ∑
γ∈Γ

dΩ(x,γx)≤t

Dγ−1x ⊗Dγx

(Ω
2 r (U ∩W )

)

≤ δ−1‖mΓ‖−1 · (µx ⊗ µx)
(

Ω
2 r (U ∩W )

)
≤ ε′.

Since this holds for arbitrarily small ε′, we obtain e−δt ·#Bt −−−→
t→∞

0. �

Fix for now x ∈ Ω. By Theorem 5.1, the measure

νLx,1 := δ‖mΓ‖e−δL
∑

dΩ(x,γx)≤L

Dγ−1x ⊗Dγx

converges weakly in C(Ω̄× Ω̄)∗ to µx ⊗ µx as L→ +∞.
Write Γr1 to denote the set of rank-one elements of Γ, and define the modified

measure

νLx,2 := δ‖mΓ‖e−δL
∑
γ∈Γr1

dΩ(x,γx)≤L

Dγ−1x ⊗Dγx.

According to Lemma 6.6, we have νLx,1 − νLx,2 → 0 weakly as L→ +∞.

For γ ∈ Γr1, write γ± for its attracting and repelling fixed points, and define

νLx,3 := δ‖mΓ‖e−δL
∑
γ∈Γr1

dΩ(x,γx)≤L

Dγ− ⊗Dγ+ .

By Lemma 6.6, we have νLx,3 − νLx,2 → 0 weakly as L→ +∞.
Fix r > 0, and let V (x, r) denote the open set of pairs (a, b) ∈ Geod Ω such

that the projective segment [a b] intersects B(x, r). Since 0 ≤ 〈ξ, η〉x ≤ r for
(ξ, η) ∈ π−1

h (V (x, r)), the preceding series of convergences gives us that, for all
ψ ∈ C+

c (V (x, r)) (and hence for ψ ∈ C+
c

(
(∂Ω)2 ∩ V (x, r)

)
, since the measures we

are talking about are supported on (∂Ω)2),

e−2δr

∫
ψ dmR ≤ lim

∫
ψ dνLx,3 =

∫
ψ d(µx ⊗ µx) ≤

∫
ψ dmR

as L → +∞, where dmR(ξ, η) := e2δ〈ξ,η〉x dµx(ξ) dµx(η) (so that m = mR ⊗ Leb);
recall that µx has no atoms and gives full measure to ∂sseΩ, so the Gromov product
〈ξ, η〉x is well defined for (µx ⊗ µx)-almost any pair (ξ, η).

Finally, set

ML
x,3 = δe−δL

∑
γ∈Γr1

dΩ(x,γx)≤L

Lebγ .

In other words, ML
x,3 is the push-forward by the Hopf parametrization of the

measure ‖mΓ‖−1νLx,3 ⊗ Leb. Note that for any L, the measure νLx,3 is concentrated

on ∂2
sseΩ, which is identified with its preimage in π−1

h (Geod∞Ω), thus the Hopf
parametrization is well defined (νLx,3 ⊗ Leb)-almost surely.
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Let V̂ (x, r) ⊂ SΩ be the set of vectors v with (v−, v+) ∈ V (x, r). From the

preceding, we obtain, for ψ ∈ C+
c (V̂ (x, r)),

e−2δr‖mΓ‖−1

∫
ψ dm ≤ lim

∫
ψ dML

x,3

=

∫
ψ d(µx ⊗ µx) ds ≤ ‖mΓ‖−1

∫
ψ dm.(6.1)

We now relate ML
x,3 to EL, via a slight modification ML (which is in fact

independent of x). With `(γ) the translation length of γ ∈ Γr1, as defined at the
end of §1.1, define

ML = δe−δL
∑
γ∈Γr1

`(γ)≤L

Lebγ .

Making the elementary observation that `(γ) ≤ dΩ(x, γx) ≤ `(γ) + 2dΩ(x, gγ), we
deduce that

(6.2) ML
x,3 ≤ML ≤ e2δrML+2r

x,3

when restricted to V̂ (x, r).
Now let us check that

(6.3) ML = δe−δL
∑

γ∈Γpr1

`(γ)≤L

⌊
L

`(γ)

⌋
Lebγ .

Indeed, let γ ∈ Γ be rank-one with `(γ) ≤ L. Let A be the set of rank-one elements
γ′ with (γ′)± = γ± and with `(γ′) ≤ L (these incidentally satisfy Lebγ′ = Lebγ),
let γ0 ∈ A be strongly primitive, and let H ≤ Γ be the group of elements that
fix every point of the axis of γ. Then A = {γk0h | 1 ≤ k ≤ L

`(γ0) , h ∈ H} has

cardinality
⌊

L
`(γ0)

⌋
· #H, while A ∩ Γpr1 = {γ0h | h ∈ H} has cardinality #H.

Thus
∑
γ′∈A Lebγ′ =

∑
γ′∈A∩Γpr1

⌊
L

`(γ′)

⌋
Lebγ′ and we add these up over rank-one

elements to obtain (6.3).
It is then clear that

(6.4) ML ≤ EL := δe−δL
∑

γ∈Γpr1

`(γ)≤L

L

`(γ)
Lebγ .

To obtain a complementary inequality, consider ϕ ∈ C+
c (V̂ (x, r)). Fix

L ≥ 2er. Observe that
⌊
L
`

⌋
≥ 1 ≥ e−rL

` for any e−rL < ` ≤ L, while 1
` ≤ b

e−rL
` c

for any ` ≤ e−rL (because e−rL ≥ 2). Therefore∫
ϕdML ≥ δe−δL

∑
γ∈Γpr1

e−rL<`(γ)≤L

e−rL

`(γ)

∫
ϕ dLebγ

= e−r
∫
ϕdEL − e−rLδe−δL

∑
γ∈Γpr1

`(γ)≤e−rL

1

`(γ)

∫
ϕ dLebγ

≥ e−r
∫
ϕdEL − e−rLe−δ(1−e

−r)L

∫
ϕdMe−rL.
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By (6.1) and (6.2),
∫
ϕdMe−rL is bounded as L→∞. Hence we have

lim sup

∫
ϕdML ≥ e−r lim sup

∫
ϕdEL.

Combining the last inequality with (6.1), (6.2) and (6.4) above, we establish that

for all ϕ ∈ C+
c (V̂ (x, r)), as L→ +∞,

e−2δr‖mΓ‖−1

∫
ϕdm ≤ lim inf

∫
ϕdEL

≤ lim sup

∫
ϕdEL ≤ e(2δ+1)r‖mΓ‖−1

∫
ϕdm.

We now let x ∈ Ω vary (but keep r > 0 fixed). Appealing to a locally-finite

partition of unity subordinate to a covering of SΩ by open sets of the form V̂ (x, r)
with x ∈ Ω, we extend the validity of the preceding inequalities to all functions
ϕ ∈ C+

c (SΩ). It remains only to take r → 0 to conclude the proof. �

7. Periodic geodesics and conjugacy classes

In this section, given a rank-one convex projective manifold M = Ω/Γ, we use
Theorem 6.1 on equidistribution of closed rank-one geodesics o SM to prove counting
results for rank-one conjugacy classes in Γ. This is closely related to the discussion
in [Bla21b, §9.5].

If M is a compact hyperbolic manifold, then there is a correspondence between
the periodic (gtΓ)-orbits in SM (as subsets) and the conjugacy classes of primitive
elements of π1(M). (Recall that an element γ ∈ π1(M) is primitive if it does not
belong to {hk : h ∈ π1(M), k ≥ 2}.)

In this section we prove that, under an irreducibility assumption, “most rank-one
periodic geodesics” are associated to exactly one conjugacy class, and “most rank-one
conjugacy classes” are strongly primitive. This has the following consequence.

Proposition 7.1. Let Ω ⊂ P(V ) be a domain, and Γ < Aut(Ω) a strongly irre-
ducible discrete subgroup with M = Ω/Γ rank-one. Consider a Sullivan measure mΓ

of dimension δΓ, and suppose it is finite. Then

δΓTe
−δΓT

∑
c∈[Γ]r1T

Dc −−−−→
T→∞

mΓ

‖mΓ‖

in C∗c (T 1M), where [Γ]r1T denotes the set of conjugacy classes of rank-one elements
of Γ with translation length less than T .

Integrating a function which is constant on the compact core against both sides
of the last statement, we obtain the following

Corollary 7.2. Let Ω ⊂ P(V ) be a domain, and Γ ≤ Aut(Ω) a strongly irreducible
discrete subgroup which acts convex cocompactly on Ω with rank-one quotient. Then

#[Γ]r1T ∼
T→∞

e−δΓT

δΓT
.

Such a correspondence fails for general convex projective orbifolds, for several
reasons (which can combine), one of which is torsion, as we can see in the following
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Example 7.3. Let Γ′ be a cocompact torsion-free discrete subgroup of PSO(2, 1),
which naturally embeds in PSO(3, 1), and M ′ = H3/Γ′; let r ∈ PO(3, 1) be the
orthogonal reflection of H3 that preserves the natural embedding of H2 in H3, so that
r commutes with Γ′; let Γ be the group generated by Γ′ and r (i.e. Γ ' Γ′ × Z/2Z),
and M = H3/Γ. Note that Γ is not irreducible. One can check that for any ` > 0,
there are exactly as many periodic (gtΓ)-orbits of period less than ` in SM and
in SM ′, whereas there are at least twice as many primitive conjugacy classes of
translation length less than ` in Γ′ than in Γ.

When the fundamental group has torsion, a possible way to obtain a well-defined
correspondence is, as we did in Definition 6.3, to associate to each closed rank-one
orbit of the unit tangent bundle of a rank-one convex projective orbifold M = Ω/Γ
a collection of strongly primitive conjugacy classes of the fundamental group Γ.
(Note that each strongly primitive element belongs to such a collection, and two
such collections are disjoint or equal.)

Notation 7.4. Let M = Ω/Γ be a rank-one convex projective orbifold. For each
closed rank-one geodesic g ⊂ SM , denote by Ng the number of associated conjugacy
classes of strongly primitive rank-one elements. We also write Nc := Ng =: Nγ if c
is a conjugacy class associated to g and γ ∈ c.

More generally, given γ ∈ Γ a (not necessarily strongly primitive) rank-one
element, fix ṽ ∈ SΩ such that γṽ = g`(γ)ṽ, and denote by Nγ the number of
conjugacy classes in Γ of elements of γ StabΓ(ṽ), i.e. elements with same attracting
and repelling fixed points, and translation length as γ.

In the setting of Notation 7.4, we have of course

(7.1) Nγ ≤ # StabΓ(ṽ),

and we may have a strict inequality. Note also that Nγ and Nγ2 may be different.
Theorem 6.1 may then be reformulated as

δΓTe
−δΓT

∑
c∈[Γ]pr1

T

Dc
Nc
−−−−→
T→∞

mΓ

‖mΓ‖

where Dc denotes the flow-invariant probability measure on the closed orbit asso-
ciated to c, and [Γ]pr1

T denotes the set of conjugacy classes of strongly primitive
rank-one elements of Γ with translation length less than T .

In Example 7.3, we have Ng = 2 for every closed rank-one geodesic g ⊂ SM . In
general two different rank-one periodic geodesics may be associated to a different
number of conjugacy classes.

We note that Proposition 7.1 does not apply directly to Example 7.3. We will
prove a slightly stronger result (Proposition 7.10), which implies Proposition 7.1
and encompasses Example 7.3, and partially answers the following more general

Question 7.5. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold with finite Sullivan measure mΓ of dimension δΓ, and

N = min{Ng : g ⊂ SM closed rank-one geodesic}.
Does the following hold?

δΓT

N
e−δΓT

∑
c∈[Γ]r1T

Dc −−−−→
T→∞

mΓ

‖mΓ‖
.
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7.1. The core-fixing subgroup. We now define a special subgroup of Γ, which
happens to be the “smallest stabilizer, among the stabilizers StabΓ(ṽ) for ṽ ∈
SΩbip = π−1

Γ SMbip”.

Definition 7.6. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold. The core-fixing subgroup of Γ is the kernel of the restriction of Γ to
the span of ΛΓ.

By the non-elementary rank-one assumption and Proposition 2.4, the core-fixing
subgroup always contains the center of Γ. Note that when Γ is strongly irreducible,
the core-fixing subgroup is trivial.

Below, we write SΩbip to denote the preimage of SMbip under πΓ : SΩ→ SM .

Lemma 7.7. Let M = Ω/Γ be a rank-one non-elementary convex projective orbifold,
and let F < Γ be the core-fixing subgroup. Then {x ∈ ΛΓ | StabΓ(x) = F} is dense
in ΛΓ, and {v ∈ SΩbip | StabΓ(v) = F} is open and dense in SΩbip.

Proof. Consider γ ∈ Γ r F . The set {x ∈ ΛΓ | γx 6= x} is open. Let us show that it
is dense, which will imply that the set of points

{x ∈ ΛΓ | StabΓ(x) = F} =
⋂

γ∈ΓrF
{x ∈ ΛΓ | γx 6= x}

is a dense Gδ set in ΛΓ. Let ∅ 6= U ⊂ ΛΓ be open. Let Γ0 ⊂ Γ be the identity
component for the Zariski topology. By [Bla21a, Prop. 3.2.2], {g ∈ Γ0 | gx ∈ U} is
Zariski-dense in Γ0 for any x ∈ ΛΓ. This implies that there exists a minimal family
of smooth and strongly extremal points x1, . . . , xn ∈ U that spans the same space as
the whole proximal limit set. Moreover, this also implies that there is a point x ∈ U
outside of the span of x1, . . . , xi−1, xi+1, . . . , xn for any 1 ≤ i ≤ n. If γ were to fix
all points x1, . . . , xn, x, then its restriction to the span of ΛΓ would be diagonal in
any basis associated to x1, . . . , xn, and γx = x would imply that all diagonal entries
are equal, and hence that γ ∈ F . Thus there exists y ∈ U such that γy 6= y, i.e. our
set {x ∈ ΛΓ | γx 6= x} meets U , as desired.

The density of points x ∈ ΛΓ with stabilizer F implies the density of vectors
v ∈ SΩbip such that the endpoints v+ has stabilizer F ; the stabilizer of such
vectors must be contained in F , hence equal to F , since StabΓ(w) ⊃ F for all
w ∈ SΩbip. Thus {v ∈ SΩbip | StabΓ(v) = F} is dense in SΩbip. Let us show
that it is also open. This is an immediate consequence of the fact that the map
v ∈ SΩ 7→ StabΓ(v) is upper semi-continuous (with global minimum F ), in the
sense that StabΓ(w) ⊂ StabΓ(v) for w close enough to v. �

7.2. Counting conjugacy classes. We now relate the number of strongly primitive
rank-one conjugacy classes, the number of rank-one conjugacy classes, and the
number of closed rank-one (gtΓ)-orbits.

Remark 7.8. Let M = Ω/Γ be a non-elementary rank-one convex projective
orbifold, γ ∈ Γ be a (not necessarily strongly primitive) rank-one element, and
ṽ ∈ SΩ be such that γṽ = g`(γ)ṽ.

If two elements γh, γh′ ∈ γ StabΓ(ṽ) are in the same conjugacy class, i.e. we have
g ∈ Γ such that γh′ = gγhg−1, then the conjugating element g is in the stabilizer
of the axis of γ, namely γZ StabΓ(ṽ). Thus, Nγ is the number of conjugacy classes
in StabΓ(ṽ) if this subgroup is centralized by γ, and it is exactly # StabΓ(ṽ) if
moreover StabΓ(ṽ) is abelian.
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Lemma 7.9. Let Ω ⊂ P(V ) be a domain, and Γ < Aut(Ω) a discrete subgroup with
M = Ω/Γ non-elementary rank-one. Let mΓ be a Sullivan measure of dimension
δΓ and suppose it is finite. Then for any non-negative function f ∈ Cc(SM), there
exists C > 0 such that for any T > 0,∑

c∈Gr1
T

∫
fdDc ≤

∑
c∈[Γ]pr1

T

∫
fdDc ≤ C

∑
c∈Gr1

T

∫
fdDc,

and if Γ contains a torsion-free finite-index subgroup Γ′, then we can take C = [Γ : Γ′]
(which does not depend on f). Moreover,

Te−δΓT

 ∑
c∈[Γ]r1T

Dc −
∑

c∈[Γ]pr1
T

Dc

 f −−−−→
T→∞

0.

Proof. This is a consequence of the discussion in §7.1. Indeed, let f ∈ Cc(SM) be
non-negative, let K ⊂ SΩ be compact such that its projection in SM contains the
support of f , and let A ⊂ Γ be the finite set of elements that fix a point of K. By
(7.1), the number of strongly primitive rank-one conjugacy classes associated to a
given rank-one periodic (gtΓ)-orbit intersecting the support of f is less than #A.
This implies the first assertion with C = #A.

If Γ′ < Γ is a torsion-free finite-index subgroup, then Γ′ ∩ StabΓ(v) = id, and
hence # StabΓ(v) ≤ [Γ : Γ′] for any v ∈ SΩ; thus, by (7.1), the number of strongly
primitive rank-one conjugacy classes associated to any rank-one periodic (gtΓ)-orbit
is at most [Γ : Γ′].

By (7.1), for any ` > 0, the number of conjugacy classes of length ` associated to
a given rank-one periodic (gt)t-orbit intersecting the support of f is less than #A.
Therefore, for any T > 0,∑

c∈[Γ]pr1
T

∫
fdDc ≤

∑
c∈[Γ]r1T

∫
fdDc ≤

∑
c∈[Γ]pr1

T

∫
fdDc + #A ·

∑
k≥2

∑
c∈[Γ]pr1

T
k

∫
fdDc.

Let ε > 0 be such that
∑
c∈[Γ]pr1

ε

∫
fdDc = 0. By Theorem 6.1 and the first part of

this lemma, for T large enough,∑
c∈[Γ]pr1

T

∫
fdDc ≤

2 ·#A
δΓT

eδΓT
∫
fd

mΓ

‖mΓ‖
.

Thus, ∑
c∈[Γ]r1T

∫
fdDc −

∑
c∈[Γ]pr1

T

∫
fdDc ≤ #A · T

ε

∑
c∈[Γ]pr1

T
2

∫
fdDc

≤ 4(#A)2

δΓT

T

ε
eδΓT/2

∫
fd

mΓ

‖mΓ‖
.

This concludes the proof of the second point. �

The following implies Proposition 7.1 because strong irreducibility implies that
the core-fixing subgroup is trivial.

Proposition 7.10. Let Ω ⊂ P(V ) be a domain, and Γ < Aut(Ω) a discrete
subgroup with M = Ω/Γ non-elementary rank-one. Consider a Sullivan measure
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mΓ of dimension δΓ, and suppose it is finite. Let F < Γ be the core-fixing subgroup.
Let K ⊂ SMbip be the set of vectors whose lifts ṽ ∈ SΩ satisfy StabΓ(ṽ) 6= F , and
A ⊂ Gr1 be the set of rank-one periodic orbits contained in K. Then

Te−δΓT
∑
g∈AT

Dg −−−−→
T→∞

0

in C∗c (T 1M), where AT is the set of orbits in A with period less than T .
Suppose further that F is the center of Γ. Then

δΓT

#F
e−δΓT

∑
c∈[Γ]pr1

T

Dc −−−−→
T→∞

mΓ

‖mΓ‖
.

Proof. Let us only give a proof of the first point, since the other is an elementary
consequence of it, Remark 7.8 and Theorem 6.1.

Consider a non-negative function f ∈ Cc(SM). Fix ε > 0. Observe that
mΓ(K) = 0 since K ⊂ SMbip has empty interior by Lemma 7.7, and mΓ is ergodic
with support SMbip by Theorem 3.3. Therefore, we can find a non-negative function
χ ∈ Cc(SM) such that χ ≥ 1 on K and

∫
χfdmΓ ≤ ε‖mΓ‖. Then

δΓTe
−δΓT

∑
c∈AT

Dc(f) ≤ δΓTe−δΓT
∑
c∈Gr1

T

Dc(χf) −−−−→
T→∞

1

‖mΓ‖

∫
χfdmΓ ≤ ε.

This holds for any ε > 0, so (δΓTe
−δΓT

∑
c∈AT Dc(f))T converges to zero. �

Observe that Proposition 7.10 applies to Example 7.3. We present a more general
family of examples, to which Proposition 7.10 does not (necessarily) apply:

Example 7.11. Consider two natural numbers n, k ≥ 1, a non-elementary discrete
subgroup Γ < O(n, 1) (for instance a Schottky group), a finite subgroup F < O(k),
and a morphism ρ : Γ→ O(k) whose image normalizes F . Consider the subgroup

Γ′ :=

{
c(γ, f) :=

[
γ 0
0 ρ(γ)f

]
: γ ∈ Γ, f ∈ F

}
< PO(n+ k, 1).

It preserves the projective model of the real hyperbolic space of dimension n+ k,
and has the following properties.

• An element c(γ, f) is (strongly primitive) rank-one if and only if γ is (strongly
primitive) rank-one;
• the limit set of Γ′ is the image of the limit set of Γ under the natural

embedding P(Rn+1) ↪→ P(Rn+1+k);
• if Γ is torsion-free or irreducible, then the core-fixing subgroup of Γ′ consists

of the elements of the form c(id, f) for f ∈ F , and it is not the center of Γ′

if for instance F is not abelian;
• if ρ is trivial and Γ is torsion-free, then Remark 7.8 implies that Ng is

the number of conjugacy classes in F for any closed rank-one geodesic
g ⊂ SM ′ := SHn+k/Γ′ (see Notation 7.4);
• if ρ is trivial, and Γ is torsion-free or irreducible and admits a finite Sullivan

measure of dimension δΓ, then Remark 7.8 and Proposition 7.10 imply that

δΓT

N
e−δΓT

∑
c∈[Γ]pr1

T

Dc −→
T→∞

mΓ

‖mΓ‖
,

where N is the number of conjugacy classes in F .
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8. Geometrically finite subgroups

Among the discrete subgroups Γ ≤ Aut(Ω), where Ω is a properly and strictly
convex domain with C1 boundary, a distinguished class of subgroups with additional
topological and geometric structure associated to them is given by the geometrically
finite subgroups, i.e. subgroups Γ which act geometrically finitely on Ω in the sense
of [CM14a], as described in §1.5.

A larger class of subgroups, which does not appear to have similarly strong
topological and geometric characterisations, is given by the subgroups Γ which act
geometrically finitely on ∂Ω in the sense of [CM14a], as described in §1.5.

In this section we show that geometrically finite subgroups (it suffices that Γ acts
geometrically finitely on ∂Ω) admit finite Sullivan measures, and that a strengthened
equidistribution result for primitive closed geodesics holds for these subgroups.

By a “smooth domain”, we will mean a properly and strictly convex
domain with C1 boundary.

Theorem 8.1. If Ω ⊂ P(Rn+1) is a smooth domain and Γ y ∂Ω geometrically
finitely, then the Sullivan measure mΓ on SM := SΩ/Γ associated to any conformal
density µ of dimension δΓ is finite. In particular, Γ is divergent, so there is a unique
conformal density of dimension δΓ, up to scaling.

We remark that a proof of Theorem 8.1, in the case of groups Γ acting geometri-
cally finitely on Ω, has previously appeared in Crampon’s thesis [Cra11, Th 4.3.1].
We include a self-contained proof here, following the gist of the argument in [Cra11],
and extend it to groups Γ acting geometrically finitely on ∂Ω. The proofs of Theorem
8.1 and of auxiliary results such as Proposition 8.14 and their consequences also
take inspiration from those of analogous results of Dal’bo–Otal–Peigné in [DOP00],
which characterize geometrically finite Riemannian manifolds of pinched negative
curvature with finite Sullivan measure in terms of Poincaré series.

Theorem 8.2 (cf. [Rob03, Th. 5.2]). In the setting of Theorem 8.1, we have

δ`e−δ`
∑

g∈GΓ(`)

Dg −−−−→
`→+∞

mΓ

‖mΓ‖

in Cb(SΩ/Γ)∗, the dual to the space of bounded continuous functions on SΩ/Γ.

By integrating the constant function 1 against both sides, we obtain the following

Corollary 8.3. In the setting of Theorem 8.2, #GΓ(`) ∼
`→∞

eδ`

δ` .

8.1. Discrete parabolic groups. In this section we establish two useful properties
of discrete parabolic groups of automorphisms of smooth domains:

Proposition 8.4. Let Ω ⊂ P(Rn+1) be a smooth domain. Then any discrete
parabolic subgroup of Aut(Ω) is finitely presented and divergent.

The divergent property had already been established by Crampon–Marquis in
the particular case where the parabolic subgroup is conjugate into SO(1,n), and
they gave moreover an explicit formula for the critical exponent:

Lemma 8.5 ([CM14b, Lem. 9.8]). Any parabolic group P y Ω ⊂ P(Rn+1) which
is conjugate into SO(1, n) is divergent, and δP = r

2 where r is the rank of P (i.e. P
contains Zr as a finite-index subgroup).
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The idea to prove Proposition 8.4 more generally is to use the strong structural
results given to us by the next proposition to prove that the Zariski closure of our
parabolic group is divergent in some sense.

Proposition 8.6 ([CM14a, Prop. 7.1 & Lem. 7.6]). Let Ω ⊂ P(Rn+1) be a smooth
domain, and P ≤ Aut(Ω) a discrete parabolic subgroup.

Then P is a cocompact lattice of its Zariski closure N , which is nilpotent and
equal to the direct product K × U , where K ≤ N is Zariski-closed, compact, abelian,
and consists of semi-simple elements, U ≤ N is Zariski-closed and unipotent, and
the map (k, u) 7→ ku is an isomorphism from K × U to N .

To make sense of divergence for the Zariski closure, we extend the definitions
of critical exponent and divergent subgroups to closed, not necessarily discrete
subgroups of SL(Rn+1) which do not necessarily preserve a properly convex open
set. (This definition will not be needed anywhere else than this section.) For any
element g ∈ SL(Rn+1), let ‖g‖ denote the square root of the sum of the squared
entries of g.

Definition 8.7. For any closed subgroup G ≤ SL(Rn+1), we define the critical
exponent δG of G as the (possibly infinite) supremum of the numbers s ≥ 0 such
that

∫
G

(‖g‖‖g−1‖)− s2 dµG(g) = ∞, where µG is any Haar measure on G. We say

that G is divergent if δG is finite and
∫
G

(‖g‖‖g−1‖)−
δG
2 dµG(g) =∞.

Note that Definition 8.7 is compatible with the definition of the critical exponent
given in §3.1, thanks to Proposition 2.6. We now prove

Lemma 8.8. Any unipotent Zariski-closed subgroup of SL(Rn+1) is divergent.

Proof. Let U < SL(Rn+1) be a Zariski-closed unipotent subgroup; denote by u its
Lie algebra. The exponential map exp : u→ U is a diffeomorphism such that the
entries of exp(x) are polynomials in the entries of x ∈ u (by the Baker–Campbell–
Hausdorff formula and nilpotence; see [Bor66, §4]). Furthermore, the push-forward
by exp of any Lebesgue measure on u (let us fix one) is a Haar measure on U (see
[CG90, Th. 1.2.10]).

Set P (x) := ‖exp (x)‖2 · ‖exp (−x)‖2 ≥ 1 for any x ∈ u, and observe that P is
a polynomial on u, and is proper, in the sense that P (x) → ∞ as ‖x‖ → ∞. By
definition, δU is the supremum of the s ≥ 0 such that

∫
u
P−s/4 diverges, where we

integrate against the Lebesgue measure. To conclude the proof, it is enough to show
that

∫
u
P−δU/4 diverges. This is a consequence of Lemma 8.9 below. �

Lemma 8.9. Let P be a proper polynomial in n ∈ Z≥1 variables, with real coeffi-
cients, such that P ≥ 1 on Rn. Let δ = sup{s ≥ 0 |

∫
Rn P

−sdµ diverges}, where µ

denotes the Lebesgue measure on Rn. Then δ is finite and
∫
Rn P

−δdµ diverges.

Proof. For any s > 0, we have∫
Rn

P−s(x) dµ(x) =

∫
x∈Rn

∫ P−s(x)

t=0

dt dµ(x)

=

∫ 1

t=0

µ(P−s ≥ t) dt

= s

∫
u≥1

µ(P ≤ u) u−s−1du
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By [BO12, Prop. 7.2], there exist a > 0, r ∈ Q>0 and k ∈ N such that µ(P ≤ u) is
asymptotically equivalent to aur(log u)k as u→∞. This concludes the proof since∫
u≥1

ur−s−1(log u)k du is finite for any s > r, and is equal to limu→∞
log(u)k+1

k+1 =∞
for s = r. �

We conclude this section with the proof of Proposition 8.4.

Proof of Proposition 8.4. Let P ≤ Aut(Ω) be a discrete parabolic subgroup. By
Proposition 8.6, the group P is a uniform lattice of its Zariski closure N = K × U ,
where K is compact, and U is Zariski-closed and unipotent. The group P is finitely
presented by [Rag72, Cor. 6.14]; let us prove that it is divergent. The restriction to
P of the projection onto U has finite kernel, and its image P ′ is a uniform lattice of
U . By Lemma 8.8, the group U is divergent, and hence so are P ′ and P . Indeed,
denote by µ a Haar measure on U and fix a relatively compact measurable subset
F ⊂ U such that (p, g) ∈ P ′ × F 7→ pg ∈ U is a bijection. Then for any s ≥ 0:∫

U

(‖g‖ · ‖g−1‖)−s dµ(g) =
∑
p∈P ′

∫
F

(‖pg‖ · ‖pg−1‖)−s dµ(g).

Set C := max{‖g‖ · ‖g−1‖ | g ∈ F}, which is finite since F is relatively compact.
The norm ‖ · ‖ we have chosen is submultiplicative, therefore

C−s
∑
p∈P ′

(‖p‖ · ‖p−1‖)−s ≤ 1

µ(F )

∫
U

(‖g‖ · ‖g−1‖)−s dµ(g) ≤ Cs
∑
p∈P ′

(‖p‖ · ‖p−1‖)−s.

These estimates conclude the proof. �

8.2. Finiteness properties for boundary geometrically finite subgroups.
The proofs of Theorems 8.1 and 8.2 for the general case of subgroups Γ acting
geometrically finitely on ∂Ω, but not geometrically finitely on Ω, will require some
finiteness results for such subgroups. We will establish these here.

Proposition 8.10 ([CM14a, Prop. 9.10]). Let Ω ⊂ P(Rn+1) be a smooth domain
and Γ ≤ Aut(Ω) a discrete subgroup acting geometrically finitely on ∂Ω. Then there
are finitely many Γ-orbits of parabolic points, Γ is hyperbolic relative to its maximal
parabolic subgroups, and Γ is finitely presented.

Proof. We can assume that Γ is non-elementary. Since Γ is a discrete subgroup of
Aut(Ω), it is countable.

By Yaman’s criterion [Yam06], Γ is hyperbolic relative to its maximal parabolic
subgroups. In particular, it has finitely many classes of maximal parabolic subgroups
(see also [Tuk98, Th. 1B]).

By Proposition 8.4, the maximal parabolic subgroups are finitely presented. Hence,
by [Osi06, Cor. 2.4] (which states that relatively hyperbolic groups, as defined in
[Osi06], inherit finite properties from their peripheral subgroups) and [Hru10, Th. 5.1]
(which proves the equivalence of several characterizations of countable relatively
hyperbolic groups, including the definitions used in [Osi06] and in [CM14a]), Γ is
also finitely presented. �

Lemma 8.11. Let Ω ⊂ P(Rn+1) be a smooth domain and Γ ≤ Aut(Ω) a discrete
subgroup, ξ, ξ′ two bounded parabolic points of the proximal limit set, and H′ a
horoball centered at ξ′. Then there exists a horoball H centered at ξ such that for
any γ ∈ Γ, either H′ ∩ γH = ∅ or γξ = ξ′.
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Proof. Suppose by contradiction that we can find a decreasing sequence of horoballs
(Hn)n centered at and converging to ξ, and a sequence of elements (γn)n∈N ⊂ Γ
such that H′ ∩ γnHn 6= ∅ and γnξ 6= ξ′. From Proposition 1.2, the intersection
[γnξ ξ

′]∩H∩ γnHn is non-empty (and compact in Ω) for all n, and we can consider
its closest point xn to γnξ, which belongs to ∂H′. Similarly, for any n, we consider
yn ∈ [ξ γ−1

n ξ′] ∩ ∂H ∩ γ−1
n H′.

Since ξ and ξ′ are bounded parabolic, up to replacing (γn)n by a sequence of the
form (gnγnhn)n, where (gn)n ⊂ StabΓ(ξ′) and (hn)n ⊂ StabΓ(ξ), we can assume
that (xn)n and (yn)n stay in a compact subset of Ω; moreover, up to extraction, we
can assume that these sequences converge respectively to x and y in Ω.

Let us prove that StabΓ(ξ) is finite, which will contradict the fact that ξ is
bounded parabolic, and hence conclude the proof. Fix γ ∈ StabΓ(ξ). Observe that
dΩ(γzn, zn)→ 0 as n→∞, where zn = γ−1

n xn. Indeed for each n let vn ∈ SynΩ be
such that v+

n = ξ, and tn = dΩ(yn, zn), so that πgtnvn = zn. By construction (tn)n
diverges, hence by Lemma 1.1,

lim sup
n→∞

dΩ(zn, γzn) ≤ lim
t→∞

lim sup
n→∞

dΩ(πgtvn, πg
tγvn) = lim

t→∞
dΩ(πgtv, πgtγv) = 0,

where v ∈ SyΩ is such that v+ = ξ. As a consequence,

dΩ(γnγγ
−1
n x, x) ≤ dΩ(γnγγ

−1
n x, γnγγ

−1
n xn) + dΩ(γnγγ

−1
n xn, xn) + dΩ(xn, x)

≤ 2dΩ(xn, x) + dΩ(γzn, zn) −−−−→
n→∞

0

and (γnγγ
−1
n x)n converges to x, hence γnγγ

−1
n stabilizes x for n large enough by

proper discontinuity. Thus StabΓ(ξ) is no larger than StabΓ(x), which is finite. �

Proposition 8.12. Let Ω ⊂ P(Rn+1) be a smooth domain and Γ ≤ Aut(Ω) a
discrete subgroup acting geometrically finitely on ∂Ω. For each parabolic point
ξ ∈ ΛΓ, fix an open horoball Hξ centered at ξ such that Hγξ = γHξ for each γ ∈ Γ.
Then the set of unit tangent vectors of SMbip whose foot-point does not belong to
the projection of a horoball in {Hξ | ξ ∈ ΛΓ parabolic} is compact.

Proof. Pick o ∈ Ω and let D := {x ∈ Ω | dΩ(x, γo) ≥ dΩ(x, o) ∀γ ∈ Γ} be the
Dirichlet domain associated to o and Γ. It is enough to show that the set

A := D ∩
⋃

ξ,η∈ΛΓ

(ξ η) r
⋃

ξ parabolic

Hξ ⊂ Ω

is compact.
Assume that this is not the case, so that there is a sequence (xn)n∈N ⊂ A that

converges to some ξ ∈ ∂Ω. Observe that ξ ∈ ΛΓ since (xn)n is contained in the
convex hull of the limit set. Γ acts geometrically finitely on ∂Ω, so ξ is either conical
or bounded parabolic.

If ξ were conical, there would exists a sequence (γk)k∈N ⊂ Γ such that (γko)k
converges to ξ while staying at bounded distance from [o ξ), and

∞ = lim
k→∞

βξ(o, γko) ≤ lim
k→∞

lim
n→∞

βxn(o, γko)

= lim
k→∞

lim
n→∞

dΩ(xn, o)− dΩ(xn, γko) ≤ 0,

which is absurd! Thus ξ is bounded parabolic.
By the definition of A, we can find sequences (ξn)n and (ηn)n in ΛΓ such that

xn ∈ (ξnηn) for each n. Since xn 6∈ Hξ and Hξ is convex, up to exchanging ξn and
ηn we can assume that [xnηn) ∩Hξ is empty for all n. Up to subsequence, we can
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assume that (ηn)n converges to η ∈ ΛΓ: if η were different from ξ, then (ξ η) would
intersect Hξ non-trivially (because Ω is strictly convex and Hξ is C1), and thus so
would [xnηn) for n large enough; since [xnηn) ∩Hξ = ∅ for all n, hence η = ξ.

Since ξ is bounded parabolic, we can find a diverging sequence (γn)n∈N ⊂ Γ of
parabolic elements fixing ξ such that, up to subsequence, (γnηn)n converges to some
η′ 6= ξ. Up to subsequence, we can also assume that (γnxn)n converges to some
x ∈ Ω, which is different from ξ since, as before, [γnxn γnηn) ∩ Hξ = ∅ and so
taking the limit as n→∞, [x η′) ∩Hξ is also empty. But then

∞ = lim
n→∞

dΩ(o, γno) ≤ 2 lim
n→∞

〈γnxn, γno〉o ≤ 2〈x, ξ〉o <∞,

which is a contradiction. �

8.3. Finiteness of Sullivan measure. Since the support of the Sullivan measure
mΓ outside of the cusp neighborhoods is compact, it suffices to check that the
mΓ-measure of (the unit tangent bundle over) each cusp neighborhood is finite.

To obtain estimates in the cusp neighborhoods, it will be useful to have the two
lemmas below, the first establishing a gap between the critical exponent δΓ and
the critical exponent of any parabolic subgroup, and the second showing that the
Patterson–Sullivan measures have no atoms.

Lemma 8.13. Let Ω be a smooth domain. For any non-elementary discrete subgroup
Γ ≤ Aut(Ω) containing a parabolic subgroup P , we have δ(Γ) > δ(P ).

Proof. It follows from the definition of the critical exponent that δΓ(Ω) ≥ δP (Ω),
and it suffices to show that the inequality is strict. Since Γ is non-elementary, we
can use a ping-pong argument to find a free product subgroup 〈h〉 ∗ P ≤ Γ where
h ∈ Γ is a hyperbolic element (up to replacing P by a finite-index subgroup). In
particular, Γ contains all the distinct elements hp1 · · ·hpk with k ≥ 1, pi ∈ P . Then
we have a lower bound for the Poincaré series

gΓ(s, x) :=
∑
γ∈Γ

e−s·dΩ(x,γx) ≥
∑
k≥1

∑
p1,...,pk

e−s·dΩ(x,hp1···hpkx)

and applying the triangle inequality

dΩ(x, hp1 · · ·hpkx) ≤
k∑
i=1

dΩ(x, hx) + dΩ(x, pix)

to the right-hand side we obtain

gΓ(s, x) ≥
∑
k≥1

e−s·dΩ(x,hx)
∑
p∈P

e−s·dΩ(x,px)

k

=
∑
k≥1

(
e−s·dΩ(x,hx)gP (s, x)

)k
The Poincaré series gP (s, x) :=

∑
p∈P e

−sdΩ(x,px) converges for any s > δP and

diverges at s = δP . Hence there exists s0 > δP such that e−s0·dΩ(x,hx)gP (s0, x) > 1,
so that gΓ(s0, x) diverges. Then δΓ(Ω) ≥ s0 > δP . �

Proposition 8.14 (cf. [Cra11, Prop. 4.3.5]). Let Ω ⊂ P(Rn+1) be a smooth domain,
and Γ ≤ Aut(Ω) be a discrete subgroup acting geometrically finitely on ∂Ω.
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Then there exists a Patterson–Sullivan density (µx)x∈Ω of dimension δ(Γ) that
has no atoms.

Proof. Fix x ∈ Ω. Consider a function j : R≥0 → R>0 such that

g′Γ(s, x) :=
∑
γ∈Γ

j(dΩ(x, γx))e−s·dΩ(x,γx)

diverges at s = δΓ, and such that for any ε > 0 there exists T ≥ 0 with j(t+ r) ≤
eεrj(t) for all t ≥ T and r ≥ 0. Let µx be an accumulation point as s tends to δΓ of
µx,s := 1

g′Γ(s,x)

∑
γ j(dΩ(x, γx))e−sdΩ(x,γx)Dγx.

We will show that µx({ξ}) = 0 if ξ ∈ ΛΓ is conical or bounded parabolic with
δ(StabΓ(ξ)) < δ(Γ). This will suffice, since δ(P ) < δ(Γ) for any parabolic subgroup
P < Γ from Proposition 8.4.

We can use the shadow lemma (Lemma 3.2) to show that µ has no atoms on
the conical limit set. Given a conical limit point ξ, we have a sequence of elements
(γ−1
n ) ⊂ Γ, a point x ∈ Ω and r > 0 such that γ−1

n x → ξ and γ−1
n x ∈ B(xn, r) for

some xn ∈ [x ξ). Thus ξ ∈ Or(x, γ−1
n x) for all n, and so

(8.1) µx({ξ}) ≤ µx(Or(x, γ−1
n x)) ≤ Cx,re−δΓdΩ(x,γ−1

n x).

Since γ−1
n → ∞ as n → ∞ and δΓ > 0, e−δΓdΩ(x,γ−1

n x) → 0 as n → ∞. Hence ξ
cannot be an atom.

It then remains to show that µx({ξP }) = 0 for any bounded parabolic point ξP
stabilized by P < Γ such that δ(P ) < δ(Γ).

We have µx({ξP }) ≤ µx(V ) ≤ lim sups↘δΓ µx,s(V ) for any open set V ⊂ Ω
containing ξP ; hence it suffices to find a family (Vn)n∈N of neighborhoods of ξP such
that lim sups↘δΓ µx,s(Vn)→ 0 as n→∞.

Take ξ0 ∈ ΛΓ r {ξP }. Without loss of generality, we can assume that x ∈ [ξ0ξP ].
By Lemma 8.11, we can find an open horoball H centered at ξP and which contains
no point of the orbit Γ · x. Since ξP is bounded parabolic, we can find a compact
subset K of ΛΓ r {ξP } such that P ·K = ΛΓ r {ξP }. Consider the compact set
K ′ := {y ∈ Ω | [y ξ] ∩H = ∅ ∀ξ ∈ K}, which does not contain ξP , and observe that
Γ · x ⊂ P ·K ′.

Enumerate P = {p1, p2, . . . }. The set Vn := Ω r (p1K
′ ∪ · · · ∪ pnK ′) is a

neighborhood of ξP in Ω for each n ≥ 1; moreover Vn∩Γ ·x = {pkγx |k > n, γ ∈ Γ′},
where Γ′ := {γ ∈ Γ | γx ∈ K ′}. Thus

µx,s(Vn) ≤ 1

g′Γ(s, x)

∑
k>n

∑
γ∈Γ′

j(dΩ(x, pkγx))e−s·dΩ(x,pkγx)

for each n ≥ 1 and s > δΓ, where g′Γ(s, x) :=
∑
γ∈Γ j(dΩ(γ · x, x))e−s·dΩ(γ·x,x) is the

modified Poincaré series defined in §3.1 (with o = x).
Let us estimate dΩ(x, pkγx) = dΩ(p−1

k x, γx) for γ ∈ Γ′ and for k large (indepen-

dent of γ). Take a compact neighborhood K ′′ of ξP in Ω which is disjoint from K ′.
By strict convexity of Ω, we can find R > 0 such that (ξ η)∩BΩ(x,R) is non-empty
for every ξ ∈ K ′′ and η ∈ K ′; in particular, 〈ξ, η〉x ≤ R. Since (pnx)n converges to
ξP , there exists N such that pnx ∈ K ′′ for every n ≥ N . As a consequence, for all
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k ≥ N and γ ∈ Γ′,

dΩ(p−1
k x, γx) = dΩ(x, pkx) + dΩ(x, γx)− 2〈p−1

k x, γx〉x
≥ dΩ(x, pkx) + dΩ(x, γx)− 2R.

Therefore we obtain, because j is an increasing function,

µx,s(Vn) ≤ e2sR′

g′Γ(s, x)

∑
k>n

e−sdΩ(x,pkx)
∑
γ∈Γ′

j (dΩ(x, pkx) + dΩ(x, γx)) e−s·dΩ(x,γx)

for all s > δΓ and n ≥ N . By assumption, ε := 1
2 (δ(Γ)− δ(P )) > 0; by the definition

of j, there is C > 0 such that j(r + t) ≤ Ceεrj(t) for all r ≥ 0 and all sufficiently
large t > 0. Hence

µx,s(Vn) ≤ Ce2sR′
∑
k>n

e−(s−ε)dΩ(x,pkx)

for any s > δΓ. Thus

µx({ξP }) ≤ lim inf
n→∞

lim sup
s↘δΓ

µx,s(Vn) ≤ lim inf
n→∞

Ce2δΓR
′∑
k>n

e−(δΓ−ε)dΩ(x,pkx) = 0. �

Proof of Theorem 8.1. By Theorem 3.3, we can assume that mΓ is associated to
the specific conformal density we have constructed in Proposition 8.14.

Let us explain why we may assume without loss of generality that Γ is torsion-free,
and hence that the action of Γ on Ω is free (since it is properly discontinuous). We
know from Proposition 8.10 that Γ is finitely generated. By Selberg’s Lemma [Sel60]
(see also [Nic13]), we can find a torsion-free, finite-index, normal subgroup Γ′ ≤ Γ.
Let (µx)x∈Ω be a Γ-equivariant conformal density of dimension δΓ = δΓ′ , with
associated Sullivan measure mΓ (resp. mΓ′) on the quotient SΩ/Γ (resp. SΩ/Γ′).

Let πΓ′

Γ : SΩ/Γ′ → SΩ/Γ be the natural projection. Observe that

mΓ =
1

[Γ : Γ′]
(πΓ′

Γ )∗mΓ′ .

Therefore, mΓ is finite if and only if mΓ′ is finite. We assume for the rest of the
proof that Γ is torsion-free.

Fix a Γ-invariant family of disjoint horoballs centered at the parabolic points of
ΛΓ. By Proposition 8.12, we have a decomposition of SMbip into a compact core
and a finite number of “cusp” neighborhoods, which are the quotients of our fixed
horoballs centered at the parabolic points. To prove the theorem, it suffices to show
that the associated measure of each cusp neighborhood is finite.

Let P ⊂ Γ be a maximal parabolic subgroup that fixes some ξP ∈ ΛΓ. Let
H = HP be a horoball fixed by P (i.e. centered at ξP ), and C = CP be a strict
fundamental domain for the action of P on H, in the sense that for any x ∈ H,
there exists a unique element p ∈ P such that px ∈ C.

Since the action of Γ on ∂Ω is geometrically finite, we can choose a relatively
compact (measurable) strict fundamental domain F ⊂ ΛΓ \ {ξP } for the action of
P . Fix x ∈ Ω. Since µx has no atoms (Proposition 8.14), we have

mΓ(πΓSH) =
∑
p,q∈P

∫
pF×qF

e2δΓ〈ξ−,ξ+〉xµ2
x(dξ−dξ+)

∫
(ξ−ξ+)∩C

dt.
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By using the Γ-invariance of µ and the definition of C, we have

mΓ(πΓSH) =
∑
p,q∈P

∫
F×p−1qF

e2δΓ〈ξ−,ξ+〉xµ2
x(dη−dη+)

∫
(η−η+)∩p−1C

dt

=
∑
p∈P

∫
F×pF

e2δΓ〈ξ−,ξ+〉xµ2
x(dη−dη+)

∫
(η−η+)∩H

dt.

From a geometric point of view, any geodesic (η−η+) intersecting H projects to
a geodesic on Ω/Γ which makes an incursion into the cusp neighborhood which C
projects to, and the term

∫
(η−η+)∩H dt corresponds to the length of this incursion.

We will now bound the lengths of these incursions using a geometric argument.
Let U ⊂ Ω be an open neighborhood of ξP such that [y η) ∩ H is non-empty

for all η ∈ F and y ∈ U , and set R := dΩ(x, ∂H r U) < ∞. For all p ∈ P and
(η−, η+) ∈ F × pF , if (η−η+) ∩ H 6= ∅, then there exists y, z ∈ ∂H such that
η−, y, z, η+ are aligned in this order, and by the definition of U we observe that
dΩ(x, y) ≤ R and dΩ(px, z) ≤ R; thus∫

(η−η+)∩H
dt = dΩ(y, z) ≤ dΩ(x, px) + 2R, and 0 ≤ 〈η−, η+〉x ≤ R.

As a consequence,

mΓ(πΓSH) ≤ e2δΓRµx(F )
∑
p∈P

(dΩ(x, px) + 2R)µx(pF ).

Since F and P ·x∪{ξP } are compact and disjoint, and Ω is strictly convex, we can
find R′ > 0 such that [y z] ∩BΩ(x,R′) 6= ∅ for all (y, z) ∈ F × (P · x ∪ {ξP }); this
immediately implies that F ⊂ OR′(px, x) for any p ∈ P . Therefore, by Lemma 5.5,

µx(pF ) = µp−1x(F ) =

∫
ξ∈F

e−δΓβξ(x,p
−1x)dµx(ξ) ≤ e4δΓR

′
e−δΓdΩ(x,px)µx(F ).

We assemble these pieces to obtain

mΓ(C) = mΓ(πΓSH) ≤ e2δΓ(R+2R′)µx(F )2
∑
p∈P

(dΩ(x, px) + 2R)e−δΓdΩ(x,px).

The right-hand side is finite since δΓ > δP by Lemma 8.13, so this concludes the
proof of Theorem 8.1. �

8.4. Equidistribution of primitive closed geodesics: proof of Theorem 8.2.
Let ELΓ denote the measure δLeδL

∑
g∈GΓ(L)Dg on SΩ/Γ for L ≥ 0. By Theorem

6.1, we already know that ELΓ →
mΓ

‖mΓ‖ weakly in Cc(SΩ/Γ)∗ when L→ +∞. We

start by replacing ELΓ by a nearby measure which will be better adapted to the
argument to come, namely

ML
Γ := δe−δL

∑
g∈GΓ(L)

`(g)Dg.

We may verify, by arguing as in the proof of [Rob03, Th. 5.2], that we still have
ML

Γ →
mΓ

‖mΓ‖ weakly in Cc(SΩ/Γ)∗ when L → +∞, and that it suffices to show

that ML
Γ converges weakly to mΓ

‖mΓ‖ in Cb(SΩ/Γ)∗ as L→ +∞, to obtain the same

(desired) conclusion for ELΓ .
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The rest of the proof consists in demonstrating that ML
Γ converges

weakly to mΓ

‖mΓ‖ in Cb(SΩ/Γ)∗ as L→ +∞. We present this step in more detail

since it more intimately involves the Hilbert geometry of the cusps.
Let us fix a Γ-invariant family of disjoint horoballs centered at the parabolic

points of ΛΓ. By Proposition 8.12, we have a decomposition of SMbip into a compact
core and a finite number of “cusp” neighborhoods, which are the quotients of our
fixed horoballs centered at the parabolic points. By Theorem 6.1, it suffices to show
that

∫
fdML

Γ −−−−→
L→∞

∫
fd mΓ

‖mΓ‖ for each bounded continuous function f which is

supported on a cusp neighborhood.
Fix a parabolic point ξ ∈ ΛΓ, P := StabΓ(ξ) and a open horoball H centered at

ξ such that γH∩H is empty for any γ ∈ Γ r P . For each r > 0, denote by Hr ⊂ H
the open horoball centered at ξ whose boundary is at distance r from that of H. To
prove the theorem, it is enough to prove that

lim sup
L→∞

ML
Γ(πΓSHr) −−−→

r→∞
0.

The rest of the argument will resemble a more refined version of the argument in
the proof of Theorem 8.1: whereas there we had a finite bound for the measure of
the cusps, here we want a bound that goes to zero as L→∞.

Let K ⊂ ΛΓ r {ξ} be a compact subset such that P ·K = ΛΓ r {ξ}. By the
definition of ML

Γ , we have

ML
Γ(πΓSHr) ≤ δe−δL

∑
γ∈Γph

`(γ)≤L, γ−∈K

Lebγ(SHr)

≤ δe−δL
∑
p∈P

∑
γ∈Γ(L,p)

Lebγ(SHr),(8.2)

where Γph ⊂ Γ consists of the strongly primitive hyperbolic elements (i.e. Γph = Γpr1),
and, for p ∈ P , the subset Γ(L, p) ⊂ Γph consists of the strongly primitive hyperbolic
elements γ such that `(γ) ≤ L and (x−γ , x

+
γ ) ∈ K × pK.

We now fix r > 0 and p ∈ P , and bound from above
∑
γ∈Γ(L,p) Lebγ(SHr).

In particular, we will bound from above the cardinality of the set Γ(L, p, r) of
γ ∈ Γ(L, p) such that Lebγ(SHr) > 0, i.e. such that the axis (γ−γ+) intersects Hr.

Fix γ ∈ Γ(L, p, r). Let a, d ∈ ∂H and b, c ∈ ∂Hr be such that γ−, a, b, c, d, γ+ are
aligned along (γ−γ+) in this order. By definition, a belongs to the closed subset
A ⊂ Ω of points y for which there exists η ∈ K with (η y] ∩ H = ∅. The set
A ∩ ∂H ⊂ Ω is compact, hence dΩ(x, a) ≤ R1 := max{dΩ(x, y) | y ∈ ∂H ∩A} <∞.
As a first consequence, dΩ(x, γx) ≤ L+2R1 ≤ N := dL+2R1e. Moreover, p−1d ∈ A
and dΩ(px, d) ≤ R1, therefore

(8.3) Lebγ(SHr) = dΩ(b, c) = dΩ(a, d)−dΩ(a, b)−dΩ(c, d) ≤ dΩ(x, px)+2R1−2r.

Note, in particular, that dΩ(x, px) ≥ 2r − 2R1.
According to the shadow lemma (Lemma 3.2), we can find R2 > 0 such that for

any R ≥ R2, there exists CR > 0 so that for any g ∈ Γ we have

C−1
R e−δ·dΩ(x,gx) ≤ µx(OR(x, gx)) ≤ µx(O+

R(x, gx)) ≤ CRe−δ·dΩ(x,gx).



Ergodicity and equidistribution in Hilbert geometry 55

Since γH ∩ H = ∅ by our definition of H, we have γa ∈ [d γ+], and hence by
(5.1)

OR2(x, γx) ⊂ O+
R2+2R1

(a, γa) ⊂ O2R2+4R1(a, γa) ⊂ O2R2+4R1(a, d)

⊂ O+
R3

(x, px),

where R3 := 2R2 + 4R1. We combine all of these observations to produce:

#Γ(L, p, r) =
∑

0≤n≤N

#{γ ∈ Γ(L, p, r) : n− 1 < dΩ(x, γx) ≤ n}

≤
∑

0≤n≤N

∑
γ∈Γ(L,p,r):

n−1<dΩ(x,γx)≤n

CR2
eδnµx(OR2

(x, γx))

≤ CR2

∑
0≤n≤N

eδn
∫
ξ∈O+

R3
(x,px)

∑
γ∈Γ(L,p,r):

n−1<dΩ(x,γx)≤n

1OR2
(x,γx)(ξ)dµx(ξ)

(using (5.15)) ≤ CR2 ·#{g ∈ Γ : dΩ(x, gx) ≤ 4R2 + 1}
∑

0≤n≤N

eδnµx(O+
R3

(x, px))

≤ CR2
·#{g ∈ Γ : dΩ(x, gx) ≤ 4R2 + 1}e

δ(N+1)

eδ − 1
CR3

e−δ·dΩ(x,px)

≤ Ceδ(L−dΩ(x,px)),

where C := CR2
CR3

eδ(2R1+1)

eδ−1
·#{g ∈ Γ : dΩ(x, gx) ≤ 4R2 + 1}.

Combining this with (8.2) and (8.3) yields

ML
Γ(πΓSHr) ≤ δC

∑
p∈P

dΩ(x,px)>2r−2R1

(dΩ(x, px)− 2r + 2R1)e−δ·dΩ(x,px).

By Lemma 8.13,
∑
p∈P dΩ(x, px)e−δ·dΩ(x,px) converges. Therefore,

lim sup
L→+∞

ML
Γ(πΓSHr) −−−→

r→∞
0. �

8.5. The number of conjugacy classes in the geometrically finite case. As
in §7, we can relate the number of strongly primitive rank-one conjugacy classes,
the number of rank-one conjugacy classes, and the number of rank-one periodic
(gtΓ)-orbits; using Theorem 8.2 instead of Theorem 6.1, we can extend these results
to the geometrically finite case.

We recall that for any given conjugacy class c, Dc denotes the flow-invariant
probability measure on the closed orbit associated to c.

Lemma 8.15. Let Ω ⊂ P(V ) be a smooth domain, and Γ ≤ Aut(Ω) a discrete
subgroup which acts geometrically finitely on ∂Ω. Let Γ′ ≤ Γ be a torsion-free
finite-index subgroup. Then∑

c∈Gr1
T

∫
fdDc ≤

∑
c∈[Γ]pr1

T

∫
fdDc ≤ [Γ′ : Γ]

∑
c∈Gr1

T

∫
fdDc

for any T > 0 and any non-negative function f ∈ Cb(T 1M), and

Te−δΓT
(

#[Γ]r1T −#[Γ]pr1
T

)
−−−−→
T→∞

0.
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Proof. The proof is the same as that of Lemma 7.9, except that we use Theorem 8.2
instead of Theorem 6.1. �

Proposition 8.16. Let Ω ⊂ P(V ) be a smooth domain, and Γ ≤ Aut(Ω) a discrete
subgroup which acts geometrically finitely on ∂Ω. Let F ≤ Γ be the core-fixing
subgroup (see Definition 7.6). Let K ⊂ T 1Mbip be the set vectors of whose lifts
v ∈ T 1Ω satisfy StabΓ(v) 6= F . Let A ⊂ Gr1 be the set of rank-one periodic orbits
contained in K. Then

Te−δΓT ·#AT −−−−→
T→∞

0,

where AT is the set of conjugacy classes in A with translation length less than T . If
Γ is strongly irreducible, then F is trivial and

δΓTe
−δΓT

∑
c∈[Γ]pr1

T

∫
T 1M

fdDc −−−−→
T→∞

∫
T 1M

fd
mΓ

‖mΓ‖
.

Proof. The proof is the same as that of Proposition 7.10, except that we use
Theorem 8.2 instead of Theorem 6.1. �

Integrating a constant function against both sides of the last statement, we obtain

Corollary 8.17. Let Ω ⊂ P(V ) be a smooth domain, and Γ ≤ Aut(Ω) an irreducible
discrete subgroup which acts geometrically finitely on ∂Ω. Then

#[Γ]pr1
T ∼

T→∞

e−δΓT

δΓT
.
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(4) 38.5 (2005), pp. 793–832. issn: 0012-9593. doi: 10.1016/j.ansens.
2005.07.004.
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[Rag72] Madabusi S. Raghunathan. Discrete subgroups of Lie groups. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New
York-Heidelberg, 1972, pp. ix+227.

[Ric17] Russell Ricks. “Flat strips, Bowen–Margulis measures, and mixing of
the geodesic flow for rank one CAT(0) spaces”. In: Ergod. Theory Dyn.
Syst. 37.3 (2017), pp. 939–970. doi: 10.1017/etds.2015.78.
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