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Application

Applications for porous fibrous materials range from electrochemical substrates to web
reinforcement in polymeric composite materials. The details of local load transfer are
studied in a class of cost-effective, stochastic fibrous networks used in baitery applica-
tions. The connectivity of these materials is quantitatively related to modulus and
strength, and detailed results of different simulations approaches in approximating ma-
terial construction are discussed. In Part II, we focus on the consequences of various
microscale assumptions concerning bonding, beam type, failure mode and simulation
scale on effective moduli and peak loads. We show that the effects of scale are important
even in a tight range of window sizes (one-tenth to ten times the staple length), especially
as compared 1o the relative insensitivity of conductivity to scale, when only bulk conduc-
tion is considered. We also discuss issues of connectivity at the scale of the porous
material rather than element-by-element. This work points toward use of simple construc-
tions to model complex behavior, and may ultimately provide insight into modeling of a

large class of porous materials. [S0094-4289(00)01604-2]

1 Introduction

In our previous work in modeling the mechanical and transport
properties of NiMH battery substrates, we uncovered a few criti-
cal theoretical and practical issues in simulations. Several groups
have recently adopted the strategy of attempting to solve a more
general stochastic problem in pursuit of understanding more gen-
erally the importance of scale in numerical simulation of linear
problems {1,2]. Here, as a continuation of our previous work, we
investigate the mechanics and transport properties for a single
class of materials, with simulations tightly coupled with validating
experiments. We find significant differences in scale effects in
simulation of transport properties [3] and mechanics properties
[4). Essentially, we have found that solution of a single set of
coupled partial differential equations for heterogeneous domains
is insufficient to model the different mechanisms involved in the
separate physical processes of conduction and mechanical load
sharing. Moreover, while conduction processes in high-contrast
networks can often be modeled quite accurately by considering
only microstructure (i.e., for bulk conduction processes), mechan-
ics simulations require detailed consideration of microscale
mechanisms of load transfer and failure.

Indeed, networks even with only linear elastic elements pro-
duce rich and physically accurate behavior if reasonable local fail-
ure criteria are applied. We expect that our strategy in construct-
ing simple networks to model real materials’ behavior will be
rather directly extended to other scales of consideration, including
the nanoscale, simply because of the preponderance of materials
(including molecules) that can be viewed, at some degree of de-
formation, as linear elastic. Certainly, investigation of the effects
of basic changes in the simple load transfer mechanisms investi-
gated here is needed in order to reasonably address the effect of
material constitutive nonlinearity.

The materials modeled in the present studies are porous sub-
strates for NiMH positive electrodes. Several key battery tech-
nologies are presently limited by materials selection and design.
Two promising technologies, NIMH and Li-ion, both rely on
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fiber/particle blends in the substrate materials of their electrodes
to provide mechanical stiffness and strength, and assure good con-
ductivity of the plates. Previous work on percolation and conduc-
tivity of similarly constructed (theoretical) networks include clas-
sic work in percolation [5], and work on the mechanics of
nonwovens [6—12]. The present authors have developed a set of
techniques to model porous, fibrous materials at the microscale,
incorporating the microstructure directly in the simulations. These
techniques have been validated with experimental data, including
mechanical tests, conductivity measurements, and battery tests
[3,4,13—17]. While these techniques have offered a validated
means of analysis of NiMH positive plate substrates, including
simulation of the effects of electrodeposition phenomena on me-
chanical and transport properties, here we focus on quantifying
the effect of selection of specific micromechanics assumptions on
somewhat more generalized network response.

In Part I of this work [18], we showed closeness in stiffnesses
of two-beam arrays for Euler-Bernoulli and Timoshenko beam
assumptions; the maximum stresses predicted by these beam types
were similarly close. We further described three techniques for
modeling fiber-fiber joints (rigid bond, torsion spring, and com-
pliant zone) demonstrating equivalence of the more physically
realistic compliant zone model with the torsion spring model de-
scribed previously.

Here, we present results of network-scale simulations. We 1den-
tify features of network which allow sometimes very simplifying
assumptions to be made (e.g., selection of Euler-Bernoulli beams
over Timoshenko beams). We also describe features to which net-
work response is highly sensitive, for instance, selection of con-
ditions for placement of ‘‘joints’” in a network comprised of
staple fibers where separation of the segments as independent el-
ements drastically alters mechanical properties. Reiterating our
objectives from Part I, we aim

1 to assess the effect of choice of beam types in models for
fibers, and the effect of assumptions at fiber-fiber bonds, on the
simulated overall network response;

2 to examine the effect of assumptions regarding material con-
nectivity on the simulated overall network response;

3 to examine the effects of scale in simulation, especially re-
garding strength and damage tolerance; and
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Fig. 1 Original (a) and reduced (b) networks, based on elimi-
nation of nonload-bearing structures for unidirectional
(y-direction) loading only. Calculated parameters on the net-
work as generated are as follows: original volume fraction —20
percent, reduced volume fraction —16 percent, number of inter-
section points —216; number of segments —361; average seg-
ment length -0.053; standard deviation, segment length
—0.054. The fibers are randomly placed, and have aspect ratio
I/d=100, with uniform staple length /=1, with length of cell /,
=1.

4 to assess the ability of spring-jointed models in predicting
real materials response, as compared to a class of fiber-particle
networks.

In Part II, the present paper, we address the final two points,
examining both real versus simulated response of NiMH sub-
strates, and scale effects in simulations as they affect predictions
of properties.

A connected to network

@ isolated from network

5<% 55 B

Fig. 2 Connectivity in beam networks. For connectivity calcu-
lated via a 2D assumption for beams, only three cases arise,
practically speaking, wherein (i) two, (ii) three, or (iii) four
beams, respectively, intersect at a single point.
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2 Network Simulations: Effects of Microscale As-

sumptions

Networks generated as described earlier share the following
features: 1) each realization has different final (reduced) volume
or mass fraction than originally imposed on the unit cell, 2) a
variety of interior structures arise in networks, but they are largely
untriangulated, and thus almost invariably statically indetermi-
nate, 3) each realization has unique connectivity. The calculated
parameters on the network of Figs. 1, for example, are as follows:
original volume fraction —20 percent, reduced volume fraction
—16 percent, number of intersection points —216; number of seg-
ments —361; average segment length —0.053; standard deviation,
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Fig. 3 Frequency distribution plots for segment size, for three
aspect ratios of fibers, (a) //d=100, (b) I/d=50 and (¢) I/d=10
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Fig. 4 Comparison of the Euler-Bernoulli beams and Timoshenko beams in
simulations of effective network modulus, for a range of volume fractions and
three aspect ratios (100,50,10). For all cases, I//.=1.

segment length —0.054. The fibers are randomly placed, and have
aspect ratio //d= 100, with uniform staple length /= 1, with length
of cell /.=1. Thus, a small number of initial parameters specify-
ing the type of network produces stochastic structures of highly
variable and complex interior structure.

For 1D fibers, there are only three practically-arising types of
fiber junctures, as shown in Fig. 2. Reduction of extraneous ends
in the network for purpose of efficient analysis results in junctures
of 2, 3, or 4 segments, since not more than two individual fibers
overlap at a single point. With low aspect ratio, this assumption of
course breaks down, since the fiber thickness must be considered
in order to model connectivity.

Fiber length between joints in the network is a critical factor in
response of the network; in the current approach, this information
is used explicitly rather than as an average value. As shown in the
frequency distribution plots of Fig. 3, resulting segment lengths
depend heavily upon the geometry of the constituent staple fibers.
The scale of the simulation relative to the material scale is also
important. At a very small scale, no bonds between fibers might
arise in the simulated area. The effective modulus in such cases
would be higher, since load would be borne disproportionately by

8.00E-03

tension and bending in single continuous fibers, instead of prima-
rily by jointed, more compliant assemblies.

We first examine the effects of three sets of critical assumptions
as they affect network response: beam type, local failure criterion,
connectivity and definition of the element, and scale of
simulation.

2.1 Element Models: Effects of Transverse Shear. Use of
more accurate beam elements in modeling networks was explored
at the microscale in Part I of this work. Significant differences in
calculated loads and displacements were found only for very low
aspect ratio segments in Euler-Bernoulli versus Timoshenko
beams. However, even in cases of very low aspect ratio, produc-
ing segments of short length (per the examples of Fig. 3, with a
set of network results shown for a low aspect ratio of 10), we find
little difference in the Euler-Bernoulli and Timoshenko beam net-
works (Fig. 4, for a “‘window size,”” or length of representative
cell, of {.=1). Thus, the network results show less sensitivity to
the selection of element type than the simpler cases investigated at
the microscale. This insensitivity is due to the function of short
segments in these networks. Primarily, network deformation is
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Fig. 5 Comparison of segment strain versus normalized Segment length in a
single network with //d=100, I//,=1, and original volume fraction of 10
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concentrated in longer lengths of fibers. Figure 5 shows a com-
parison of segment length to shear strain in the element, for a
sample simulation with [/d=100, I//,=1, and original volume
fraction of 10 percent. Overall, we observed that the very shortest
segments are ‘‘clustered’’ and essentially function as rigid inter-
connects for fewer, longer fibers in networks. Thus, it seems un-
likely that improvements in modeling stresses at smaller than the
beam scale would provide much insight for large fiber networks.

2.2 Failure Criteria and Network Damage Tolerance.
Maximum stresses in assemblies of connected beams necessarily
occur at the nodes. Two local strength-of-materials failure criteria
are conceivable, representing the extremes of nodal damage toler-
ance; these are illustrated in Figs. 6. For maximum stress occuring
at node b (Fig. 6(a)) one could fail only the beam at which stress
is maximized, i.e., segment 2 (Fig. 6()), or, more conservatively,
remove the entire node (Fig. 6(c)).

Simulations of real networks (with geometries similar to those
of NiMH battery materials) show little sensitivity to the choice of
beam or nodal failure, in terms of prediction of peak stress (with
real network behavior shown in the schematic of Fig. 7(a)). Fig-
ures 7(b) and 7(c) illustrate, for three aspect ratios (100, 50, 10),
l/l,=1, and for both Euler-Bernoulli and Timoshenko beams.
Thus, we suggest use of the simpler nodal failure criterion, as
these are less computationally intensive, i.e., remove portions of
the network from the simulation more quickly.

2.3 Segments Versus Staple Fibers as Elemental Units.
Composition of fiber-fiber interconnects are highly variable, per
examination of micrographs of NiMH materials, and recently, Li-
ion battery materials. In generation of networks, we may view
overlapping staple fibers as producing separate segments for
analysis, as shown in Fig. 2 (resulting in 6 independent torsion
springs if such a joint assumption is used), or we may preserve the
fibers as the elemental units, joining continuous fibers with single
torsion springs, as shown in Fig. 8. Preservation of the staple fiber
as the elemental unit has the effect of increasing the overall stiff-
ness, and also affects the scale-dependence of simulations. While
this method is closer to stated physical model of real materials
wherein straight fibers are used and bonded, actual materials often
contain many kinked or curved fibers. Thus, we expect a simple
model to fall somewhere between the assumptions of Fig. 2 and
Fig. 8.

2.4 Scale Effects in Simulation: Mechanics Versus Trans-
port Properties. We illustrate the importance of scale in simu-
lation with a simple example—a zig-zag arrangement of seg-
ments, as shown in Fig. 9. For a range of ratios of staple length in
simulation to simulated lengthscale, and torsion spring constants,
we present solutions for effective modulus and maximum stress in
the simple network via a dummy load method. Sample derivations
follow. By equilibrium considerations, we calculate the axial force
inside each beam, the transverse force inside each beam, and the
moment. For two beams, 1 and 2, we have the axial forces and
transverse forces and moments,

Beam 1.
S1=F,cosy—F,siny
T\=F,siny+F,cosy (D)
My=—-M-F.siny—F,£cosy
Beam 2.

§,=F,cos y+F,siny
Ty=—F,siny+F,cosy (2)
My=—M—F (Isin y—£sin y)—F (I cos y+ £ cos )
For multiple beams, only M, is altered. The potential energy be-

comes
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(b)

Fig. 6 Schematic of network failure criteria. The microstruc-
ture in (a), comprised of 7 fiber segments and 5 nodes, is de-
formed until a local failure initiates at node b. The least conser-
vative failure progression assumption (b), the beam
assumption, removes only fiber segment 2, since stress is
maximized theoretically at its end at point b. The most conser-
vative assumption, the node assumption, is shown in (o),
wherein the entire node b fails, resulting in loss of beam seg-
ments 1,2, 6, and 7.

(SEoMiy s My
= |+ —=]d&+ +—
v o\2EA ' 2EI é o\2EA ' 2EI £ @
We obtain the displacement in each direction at the boundary edge
as

au

dx= IF.
au

= SF “)
oU

dd)z W

We restrict displacement on the right-hand side to the x-direction,
so that dy=d¢=0. Imposing dx=X, we obtain three equations
and three unknowns: F,, F y» and M in terms of X. Per our defi-
nition of effective modulus, as

E effective F
E fiber XAE fiber

&)

we obtain the following expressions for cases (i), (ii), and (iii) of
Fig. 9, as
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Fig. 7 Comparison of failure assumptions in predicting peak stress, with peak
stress shown in the typical network stress-strain curve shown in (a). Peak
stresses are shown for both Euler-Bernoulli and Timoshe:i<o beam assump-
tions in (b), for a range of volume fractions and three aspect ratios (100,50,10).
For all cases, I/1.=1.

case (i):
Eetrective I(2IK+ED ]
Eper =3 I(I’AK sin? y+6EI” cos® y+ 1211K — 121K sin? y+21*EIA sin” y) ©)
case (ii):
Eeffective 3 IK(4ZK+ 3EI)
Egber 2 {2PK?A sin” y+24K°1 cos” y+ 61’ KEIA sin® y+ 18EI°K cos® y+3E*I*Al sin’ ) @
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case (iii):

Ecttective _ IK(61K+5EI) )
Egper  L(30EI°K cos® y+361K?I cos® y+31°K?A sin” y+ 10I2KEIA sin® y+ 6E>I7] sin® 7)
For I=1/2, 1/4 and 1/6, respectively for cases (i), (ii), and (iii). We find by substitution, case (i):
Eeffectivc _ 1(K+ EI) (9)
Egper (AK sin® y+48EI” cos® y+ 481K cos®> y+4EIA sin® y)
case (ii):
Ectrective 192-IK(K+3EI) "
Egver  (K?Asin® y192K?I cos’ y+ 12KEIA sin® y+ ST6EI’K cos? y+ 24E°17A sin® 7) 10
case (iii):
Eetrective 432-IK(K+5ED) an

Egber  (2160EI’K cos® y+432K] cos” y+ K2A sin’ y+ 20KEIA sin? y+ T2E2I?A sin® )

which become, for K-—0 (i.e., rigid bond)

case (i):
Eeffeclive
Egper  Asin® y+48] cos? y (12
case (ii):
Eeffeclive _ — I 5 (13)
Etper A sin® y+192] cos © y
case (jii):
E cttectiv I
effective _ — . (14)
Egper A sin” y+432] cos® y

From (7) or (8) we confirm in the limit as /—0 (i.e., the beam is
comprised of an infinite series of rigid bonds) that the E gcrive
—oo. Results for these cases are shown in Figs. 10(a) and 10(b).
The clamped end condition in the derivation results in stiffer be-
havior in the two-beam arrays for low torsion constants, but a

Fig. 8 Schematic of torsion springs at a fiber-fiber “joint”
wherein staple fibers are preserved as an elemental unit rather
than segments (as shown in Fig. 2). Only connections between
segments from different fibers are modeled with torsion spring
connections.
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transition occurs at normalized torsion spring constants of 1.
Above those values, there is a clear stiffness advantage to having
fewer segments. This in turn clearly illustrates the effect of scale
in mechanics simulations on jointed networks: window size, or
scale of simulation (where here, the edge length is designated at /,
as in Part I of this work), strongly affects calculated mechanical
properties.

This is not the case in calculation of transport properties for
high contrast materials. Previously, it was shown [3] that for
simulation scales one-tenth to equal the staple fiber length, little
difference in calculated conductivity was found. Essentially, the
increased length of fiber in even a zig-zag array alters only the
total conductive volume, but does not alter the conduction mecha-
nism if bulk conduction is considered. This clearly illustrates the
difference in scale selection for simulations in separate physical
processes, and the importance of experimental validation. In the
materials studied by the present authors, models employing only
bulk conduction fit the materials’ conductivities quite well; in
cases where surface conduction would be required, more analysis
and simulation would be necessary to determine appropriate
scales of simulation for transport.

N-li=1
h o I+
I I3| la' |3
o o o
case i case ii: case iii:
N=2 N=4 N=6

Fig. 9 Connectivity versus effective modulus in simple bilin-
ear networks. Schematics of the illustrative cases are shown
wherein segments (whose lengths sum to 1) are joined by tor-
sion springs of variable stiffness.
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Fig. 10 Effective moduli (a) and maximum stresses (b) are given for a=30 and
a=150 deg, for a range of torsion spring constants and a variable number of

segments for arrays as shown in Fig. 9

3 Discussion: Connectivity, Scale and Effects on
Modulus and Peak Stress

Microscale considerations affect network response profoundly,
and though it may be possible to bound results via purely statis-
tical approaches, it is important to distinguish between various
scales and physical processes, such as mechanics and transport.
The sometimes complex architectures seen in real materials can
be efficiently simulated using only linear elastic elements, but
some detail is required in imaging in order to make appropriate
approximations of material properties. The intertwined effects of
connection stiffness, segment or staple fiber length and scale had
been reported previously [4,15)]. Here we demonstrate the under-
lying theoretical reasons for these simulation results.

Figures 11 and 12 summarize some of the important findings
here regarding scale, connectivity and their effect on network
properties. The interrelationship of connectivity and scale are
demonstrated by the results of Figs. 11, with normalized effective
moduli (Fig. 11(a)) and peak stresses (Fig. 11(b)), for two nor-
malized torsion spring constants. Staple fibers were of uniform
aspect ratio of 10 in all cases. Because simulations were per-
formed for representative cells slightly larger than the staple

466 / Vol. 122, OCTOBER 2000

length (I,=1.2), networks (of nonzero reduced volume fraction)
consisted only of jointed beams. This scale effect is pronounced
for a wide range of connector compliances, as shown for three
different simulation sizes in Figs. 12(a) and (b).

Normalized effective moduli (Fig. 12(a)) and peak stresses
(Fig. 12(d)), are shown for three normalized torsion spring con-
stants, and for three representative cell sizes (/.=0.5, 1.0, 10).
Plots were for networks comprised of fibers with uniform aspect
ratio of 100. Table 1 gives the values of moduli and peak stresses
for all cases. The reduction in both modulus and strength are more
dramatic for compliant, rather than stiff bonds, as scale of simu-
lation size increases, in all cases. For the range of simulation sizes
studied, there were no plateaux in these values, suggesting that
unlike the conductivity problem, the mechanics problem requires
a statistical approach detailed enough to quantify bond effects. For
rigid bonds, the effect on moduli and strengths over three orders
of magnitude of simulation lengthscale were moderately small;
few networks studied, however, appeared from image analysis to
contain well-defined fiber-fiber bonds. These results suggest that
for multiphase networks, the statistics of connectivity of even un-
percolated phases is warranted.
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Fig. 11 Normalized effective moduli (a) and peak stresses (b),
for two normalized torsion spring constants. Plots were for net-
works comprised of fibers with uniform aspect ratio of 10, with
representative cell edge length of /.=1.2.
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Fig. 12 Normalized effective moduli (a) and peak stresses (b),
for three normalized torsion spring constants, and for three
representative cell sizes (/,=0.5, 1.0, 10). Plots were for net-
works comprised of fibers with uniform aspect ratio of 100.

Table 1 Values for moduli and peak stresses shown in Figs. 12(a) and 12(b)
1.=0.5 .=1.0 1.=10.0
K=1000 K=1.0 K=0.001 K=1000 K=1.0 K=0.001 K=1000 K=1.0 K=0.001
‘—Eﬁiﬁ“— 4.290E-03| 3.840E-03| 3.822E-03| 3.291E-03| 5.569E-04| 3.216E-06] 4.846E-04| 5.36E-05 8.02E-08
€ Gw 4.290E-03] 3.844E-03| 3.822E-03| 3.067E-03| 5.489E-04 [ 3.203E-06| 4.082E-03| 4.52E-05 5.80E-08
4 Conclusions/Future Work
Acknowledgments

We have shown that greater detail in beam modeling is prob-
ably unnecessary in these materials, but that the issue of scale is a
complex one, especially when coupled with considerations of
joint type. Simulations to determine peak load are relatively in-
sensitive to local (total node versus beam) failure criteria; this
may guide purely statistical efforts in modeling load sharing in
damaged spring networks. The reality is, of course, somewhat
more complicated, since many technologically important materi-
als are comprised of multiple phases of different morphology, and
connectivity is seldom well-described by a single connection
point.

Future work will focus on greater detail in connectivity, includ-
ing investigation of 3D loads in fibers near the intersection point.
While the 2D approaches presented here have allowed focus on
critical network specifics, including connectivity, scale of simula-
tion, and bond type, the connectivity of 3D networks requires
understanding of how a nonpercolated phase might act to join a
percolated one, as occurs frequently in this class of materials.
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