

Concrete for a Resilient and Sustainable Infrastructure

Ravi Ranade and Victor C. Li Department of Civil and Environmental Engineering, University of Michigan Ann Arbor

Motivation

Existing Concrete Infrastructure:

Lacks Durability & Sustainability

'% of the global GHG emissions (2009 10 times more energy intensive than average GDP in the US

Cement Plant

Lacks Resilience

I-90 Truck Crash (2003)

ASCE's Assessment of

US Infrastructure

2009 Grades

rinking Wate

Hazardous Was

Roads

Schools

Fransit

Japan Tsunami (2011)

Proposed Material Solution

Green High Strength High Ductility Concrete

Integrating strength, ductility, durability, and greenness in one concrete material

Multi-scale Theoretical and Empirical Analysis Approach

To understand and design a resilient and sustainable infrastructure, the material behavior down to nano-micro length scales is investigated using carefully designed experiments.

Based on the micromechanical tailoring of GHSHDC, the performance of infrastructure in terms of its resilience and sustainability is predicted using a series of analytical and numerical models.

Results

Invention of High Strength High Ductility Concrete (HSHDC) [US Patent Pending]

Property	HSHDC	Concrete
Compressive Strength (MPa)	166	40
Iltimate Tensile Strength (MPa)	14	3
Tensile Strain Capacity	3.50%	0.01%
Modulus of Rupture (MPa)	30	4
Average Crack Width (µm)	110	Indefinite
CO ₂ Footprint (kg CO ₂ eq/L)	0.58	0.30
rimary Energy Intensity (MJ/L)	7	1.2

Normal Concrete

Conclusions

- industrial

• Due to the combination of strength, ductility, and durability enabled by tight crack width, this invention has the potential to create a safer and less costly infrastructure in harmony with the natural environment

The greener version of HSHDC: Green High Strength High Ductility Concrete (GHSHDC), which utilizes numerous further waste streams Will improve the sustainability of the built environment

Acknowledgements

